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Table of abbreviations and definitions 

Abbreviation Definition 

Amplicon A piece of DNA that is the product of a 
polymerase chain reaction. Within the context of 
metabarcoding, a segment of a gene that will be 
used for DNA barcoding purposes 

ASV Amplicon Sequence Variant – a unique nucleic 
acid sequence obtained from the sample 

BLAST Basic Local Alignment Search Tool – a very 
popular algorithm to find targets in a sequence 
database that are similar to a query, based on 
sequence similarity measures 

Chimeras / Chimeric sequences False sequences formed by the incorrect joining 
of two or more biological sequences together. 
This often occurs during PCR. 

COI Cytochrome c Oxidase subunit I, a gene within 
the mitochondrial genome that is a popular 
marker for DNA barcoding studiesI 

CPU Central Processing Unit, the chip in each 
computer that is primarily responsible for general 
computational tasks 

ddPCR Droplet Digital PCR, a method of PCR that allows 
the direct quantification of targets within a 
sample 

DNA Deoxyribose Nucleic Acid, the primary 
information storage molecule in cells 

eDNA / eRNA Environmental DNA (or RNA), which is derived 
isolated from environmental samples 

GBIF Global Biodiversity Information Facility – a free 
database that contains hundreds of millions of 
species occurrence records 

GPU Graphical Processing Unit, which is faster for 
certain types of computation than the CPU 

MAG Metagenome-assembled genomes – genomes 
that have been reconstructed from metagenomic 
data 

MOTU See OTU 

NMDS Non-parametric Multidimensional Scaling -– a 
method for highlighting gradient structures 
within high-dimensional data. Also see PCoA 
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ONT Oxford Nanopore Technologies, makers of the 
popular Nanopore sequencing platform 

OTU / MOTU Operational Taxonomic Unit – groups of closely 
related sequences 

PCoA Principal Coordinate Analysis – a statistical 
method for highlighting structures within high-
dimensional data. Also see NMDS. 

PCR Polymerase Chain Reaction – a molecular biology 
technique for replicating DNA sequences 

QC Quality Control, a series of tests to ensure results 
are adhering to the expected standards 

qPCR Quantitative PCR, sometimes also called real-time 
PCR (RT-PCR) which should not be confused with 
reverse-transcriptionase PCR (RT-PCR), the 
method of converting RNA sequences into DNA 
sequences. qPCR is used to quantify the amount 
of a target sequence within a sample (also see 
ddPCR) 

RAM Random Access Memory – a measure of volatile 
memory within a computer  

RNA Ribose Nucleic Acid, a short-lived molecule that is 
derived from nuclear DNA and typically encodes 
gene sequences 
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Executive Summary 

This guideline provides a comprehensive overview of the role of bioinformatics in environmental 

genomics analyses. It outlines the standardized workflow involved in analyzing metabarcoding data, 

including demultiplexing, quality filtering, denoising, read merging, artifact filtering, clustering, and 

taxonomic assignment.  

Quality control (QC) is crucial in metagenomics and metabarcoding workflows to ensure reliable and 

actionable results. High-quality sequence data impacts taxonomic assignments and computational 

efficiency. Effective QC minimizes the risk of spurious detections and supports reproducibility across 

datasets. Various QC tools tailored to different sequencing platforms (e.g., Illumina, PacBio, Oxford 

Nanopore), each with their own strengths and limitations in optimizing sequence data quality for robust 

scientific analysis. 

Denoising is an important step to reduce impact of single nucleotide variants (SNVs) on taxonomic 

assignments. SNVs, often artifacts from PCR or sequencing processes, can lead to inaccuracies in 

targeted sequencing analyses. Methods like operational taxonomic units (OTUs) and amplicon sequence 

variants (ASVs) mitigate these errors by clustering or denoising sequences, respectively. OTUs group 

similar sequences to minimize errors and dependency on reference databases, while ASVs preserve 

individual sequence uniqueness and are more reproducible. 

Taxonomic assignment is one of the more challenging steps in the analytical pipeline. Confounding 

issues include PCR and sequencing errors, incomplete reference databases, and the need for accurate 

algorithm selection. Algorithms are crucial for probabilistically determining taxonomic assignments 

based on sequence similarity. Methods like k-mer based approaches (e.g., Kraken2) and sequence 

similarity tools (e.g., MegaBLAST) offer rapid taxonomic assignment but may sacrifice accuracy for speed. 

Phylogenetic approaches (e.g., EPA-NG) provide the highest accuracy by placing query sequences within 

evolutionary contexts but are computationally intensive. A nuanced approach to algorithm selection is 

recommended, based on specific project goals and dataset characteristics. Faster algorithms can be used 

for initial taxonomic assignments, while phylogenetic methods should be employed for resolving 

ambiguous results or when accuracy is paramount. Integrating multiple markers and validation through 

consensus methods can enhance taxonomic reliability, especially for invasive or endangered species 

detection. 

Reference database choice significantly impacts the assignment of taxonomy to sequence reads and the 

quality thereof. Curated databases ensure higher accuracy but often limit the number of taxonomic 

assignments due to stringent curation standards. Uncurated databases like GenBank’s nucleotide 

database provide broader taxonomic coverage but at the expense of accuracy. The decision on reference 

database choice should align with study objectives, leveraging comprehensive databases like GenBank 

for broader biodiversity assessments versus curated databases for precise species identification. 

Managing false positive and false negative detections in metabarcoding data is crucial for accurate 

biodiversity assessments. False positives can arise from contamination, while false negatives can result 

from PCR inhibition or insufficient sequencing depth. Balancing false positives and negatives is essential 

to maintain a degree of sensitivity required to meet study objectives. Hierarchical occupancy modeling 

helps correct for detection errors, supporting robust conclusions. 
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Quantitative analyses in biodiversity studies are challenging with environmental DNA (eDNA) because it 

is subject to various biases. Laboratory processes and environmental factors can introduce biases in 

sequence read counts, complicating the accurate interpretation of data. Despite these challenges, strong 

correlations between sequence read counts and organism biomass or abundance are frequently 

demonstrated. Techniques like occupancy modeling and normalization methods (e.g., rarefaction curves) 

help manage variation in sampling effort and ensure robust biodiversity estimates. 

Bioindicators and biotic indices are essential for monitoring ecosystem health. Environmental genomics 

aids in identifying both known and novel bioindicator taxa, capturing comprehensive community data. 

Biotic indices consolidate bioindicator information into single metrics, crucial for assessing ecosystem 

quality. Environmental genomics data support existing biotic indices and facilitate the development of 

new ones, yet interpretation requires awareness of differences from traditional morpho-taxonomic data. 

Understanding the functional characteristics of an ecosystem is possible through metagenomics and 

metatranscriptomics. These techniques are most highly developed for microbial community analysis, 

although the techniques are increasingly being applied to metazoan communities.  

The field of environmental genomics is rapidly progressing, driven by expanded project scopes, 

increased sequencing depths, and growing reference databases. Advanced algorithmic and 

computational solutions are enhancing data analysis speeds. However, gaps in reference databases 

persist, requiring focused efforts to bridge them. Establishing standardized reporting for eDNA data is 

crucial for enhancing confidence in results and supporting broader adoption in industry and regulatory 

contexts. 
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Decision tree for navigating this document 

Step 1: Base calling and demultiplexing 

Decision 1: What sequencing platform is being used 

• Want a portable solution and long read-lengths: Oxford Nanopore 

o Speed is more important than accuracy → use Guppy (Section 2.3.1.1) 

o Accuracy is more important than speed → use Bonito (Section 2.3.1.2) 

• Want to sequence a large number of reads from the sample: Illumina 

o Use BCL-Convert (Section 2.3.2.2) 

• Want long read-lengths: PacBio 

o Use SMRT Analysis (Section 2.3.3.1) 

Decision 2: What type of study is this 

• Want to understand the biological function characteristics of the environment: Metagenomics / 

Metatranscriptomics → go to Section 5 

• Want to know what species are present in the environment: Metabarcoding → go to Step 2 

Step 2: Quality control 

Decision 1: What sequencing platform is being used (from Step 1) 

• Oxford Nanopore → see Section 2.4.2.3 

• Illumina → see Section 2.4.2.1 

• PacBio → see Section 2.4.2.2 

Step 3: Clustering/denoising 

Note: clustering/denoising software will typically also merge paired-end reads (if it is applicable to your 

experiment). Merging of pairs is sometimes recommended before clustering/denoising (e.g., VSEARCH) 

or after (e.g., DADA2). 

Decision 1: What type of error reduction is desired 

• Increased data reduction, increased processing speed, decreased precision in taxonomic 

assignments → OTU clustering (Section 2.5.2) 

• Less data reduction, slower processing speed, increased precision in taxonomic assignments → 

denoising (Section 2.5.5) 

Step 4: Taxonomic assignment 

Decision 1: Choice of reference database 

• Matching the highest proportion of reads is paramount (e.g., general biodiversity survey) → use 

an uncurated database (see Section 3.3) 

• Highest accuracy is paramount (e.g., looking for specific organisms) 

o An existing reference database exists that suits the needs of the project → use a curated 

reference database (see Section 3.4) 
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o A new reference database will need to be generated → make a custom reference 

database (Section 3.5) 

Decision 2: Choice of taxonomic assignment algorithm 

• Speed is most important → use a k-mer algorithm (see Section 2.7.2) 

• Balance of speed and accuracy → use one of the BLAST algorithms (Section 2.7.3) 

• Accuracy is most important (access to high-performance computing resources is available) → 

use a phylogenetic method (Section 2.7.4) 

Step 5: Data analysis/interpretation 

Decision 1: are quantitative results desired → see Section 4.1.3 

Decision 2: if a biotic index will be used → Section 4.2.2 

Decision 3: if you need to understand differences between biological communities 

• The dataset is small in size → Section 4.2.3.2 

• The dataset is large and: 

o Want to understand the interactions between species, their traits, and their 

phylogenetic relationships → Section 4.2.3.3.1 

o A high confidence in detection/non-detection is needed → Section 4.2.3.3.2 

o Want to perform a network analysis on species relationships → Section 4.2.3.4 
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1 Introduction 

Bioinformatics plays a critical role in environmental DNA (eDNA) analysis, which involves the extraction 

and examination of genetic material from environmental samples such as soil, water, or air to study 

biodiversity. The process starts with the raw DNA sequence data that has been generated by laboratory 

analyses. The process encompasses several key steps: 

1.1 Data Processing and Management 

• Sequencing Data Handling: High-throughput sequencing generates large volumes of data. 

Bioinformatics tools are used to efficiently manage, store, and preprocess these data. This 

includes tasks such as demultiplexing, which sorts sequences from different samples, and 

removing adapter sequences. 

• Quality Control (QC): Ensuring high-quality data is fundamental. Tools like FastQC, Trimmomatic, 

and Cutadapt are employed to filter out low-quality reads, trim adapters, and remove 

contaminants. QC is crucial for accurate downstream analysis. 

1.2 Sequence Analysis 

• Denoising and Error Correction: Bioinformatics algorithms correct errors introduced during PCR 

amplification and sequencing. Tools like DADA2 help distinguish true biological sequences from 

artifacts. 

• Read Merging: Paired-end reads from sequencing can be merged to form longer contiguous 

sequences, enhancing the accuracy of subsequent analyses. 

1.3 Taxonomic Assignment 

• Clustering and OTU/ASV Formation: Sequences are grouped into Operational Taxonomic Units 

(OTUs) or Amplicon Sequence Variants (ASVs). OTUs cluster sequences based on similarity, while 

ASVs represent individual sequences after denoising. 

• Taxonomic Classification: Bioinformatics tools assign sequences to taxonomic groups by 

comparing them against reference databases. Methods vary from k-mer-based approaches (e.g., 

Kraken2) to alignment-based methods (e.g., BLAST) and phylogenetic approaches (e.g., EPA-NG). 

Each method has trade-offs in terms of speed, accuracy, and computational requirements. 

1.4 Functional Annotation 

• Functional Profiling: Beyond identifying species, bioinformatics allows for the prediction of 

functional potential within a community. Tools like PICRUSt and Tax4Fun infer the presence of 

genes and metabolic pathways from taxonomic data, while direct functional annotation can be 

performed using tools like HUMAnN2 and eggNOG. 

1.5 Data Integration and Interpretation 

• Statistical Analysis: Bioinformatics provides statistical frameworks to analyze the diversity and 

structure of microbial communities. Techniques include alpha and beta diversity metrics, 

multivariate analyses, and differential abundance testing. 
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• Modeling and Visualization: Bioinformatics tools assist in visualizing complex data through 

heatmaps, ordination plots, and network analyses. 

Bioinformatics is indispensable in eDNA analysis, driving the entire process from raw data to meaningful 

ecological insights. 

2 Metabarcoding pipeline 

2.1 Introduction 

Currently, metabarcoding is overwhelmingly the most common approach to obtaining comprehensive 

biodiversity data from environmental DNA. Although there are different paths to take through the 

workflow and some steps are optional, the overall series of steps is generally quite consistent. Figure 1 is 

from a recent review paper about various pre-built pipelines available (Hakimzadeh et al., 2023), and 

illustrates the general workflow and the alternative paths that can be taken. Here, we give a brief 

overview of each step and in the next few sections, we proceed through the workflow step-by-step and 

consider the various options available and make recommendations about when one option may be the 

superior choice in a given situation. 

  

Figure 1: The typical metabarcoding analytical pipeline workflow, with a few alternative paths and optional steps (Hakimzadeh 
et al., 2023) 

For a given metabarcoding project, it is important that all samples are processed with the exact same 

bioinformatics pipeline, as different bioinformatics pipelines and parameters can potentially give 

significantly different results from the same raw sequence data. It is also particularly important to 

consider the need to link together datasets generated from different sequencing runs. This is especially 

relevant for taxonomic groups and markers with incomplete reference databases, meaning taxa cannot 

be linked based on species names and may influence the choice between use of OTUs (operational 

taxonomic units) and ASVs (Amplicon Sequence Variants; (Callahan et al., 2016)), discussed later in this 

document (see Section 2.5.1). 
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2.1.1 Steps in the metabarcoding pipeline (refer to Figure 1) 

• Demultiplexing – a procedure that sorts DNA sequences that have been processed together into 

individual samples/projects 

• Quality filtering – a series of steps to remove bad DNA sequence reads (e.g., with poor base 

calling scores, inappropriate lengths, etc.) 

• Denoising – a statistical technique that attempts to remove errors introduced through the 

polymerase chain reaction or sequencing laboratory steps 

• Merging paired-end reads – in cases where sequencing is bi-directional and there is an overlap 

between the forward and reverse reads, these can be merged into a single sequence 

• Artifacts filtering – an additional QC step to look for chimeras (i.e., the forward sequence from 

one amplicon being merged with the reverse sequence from another) 

• Clustering – grouping similar DNA sequences together 

• Taxonomic assignment – attempting to identify the organism from which each DNA sequence 

came from 

2.2 Comparisons of pre-existing pipelines 

Pipelines are the heart of most bioinformatics analyses. In a broad sense, a pipeline can be described as 

the “glue” connecting a series of software packages to perform an analysis. Some pipelines can be end-

to-end, starting at demultiplexing and ending with taxonomic assignment and others cover more narrow 

workloads. As the implementation of a pipeline from scratch is a non-trivial task, a plethora of 

downloadable pipelines have been published, offering unique algorithms and methodologies tailored for 

different aspects of sequence processing.  This section of the guidebook will cover and compare 

published pipelines that can be used for analyzing metabarcoding data. We will focus on end-to-end 

pipelines and evaluate these pipelines over a range of relevant criteria. Our analysis also includes 

discussions on the considerations for choosing a pipeline based on specific project goals, such as the 

taxonomic breadth of the study, the size and complexity of the dataset, and the available computational 

resources. By dissecting the strengths and limitations of each pipeline, we provide a resource that can 

inform researchers' pipeline choices, thereby optimizing the accuracy and efficiency of metabarcoding 

studies.  

2.2.1 Pros and cons of using a pre-existing pipeline 

The choice between utilizing a pre-existing pipeline package and developing a custom pipeline is a 

strategic decision that researchers must make, weighing various technical and practical considerations.  

Here we discuss the advantages and disadvantages of adopting pre-existing metabarcoding pipelines 

versus the construction of a bespoke pipeline. 

2.2.1.1 Using a Pre-existing Pipeline 

Pros: 

1. Time-Efficient: Pre-existing pipelines are ready to use, which significantly reduces the time from 

sample collection to data analysis and interpretation. 

2. Community Validation: These pipelines have often been tested and validated by a large 

community, which can add confidence in the reproducibility and reliability of results. 
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3. Support and Documentation: A broad user base ensures better support and extensive 

documentation, which can help troubleshoot and guide new users through the process. 

4. Regular Updates: Maintained pipelines benefit from regular updates that include bug fixes, new 

features, and improvements to keep pace with the evolving field. 

5. Cost-Effective: They can be more cost-effective since developing a new pipeline requires 

significant investment in terms of time and resources. 

Cons: 

1. Generalization Over Specialization: Pre-existing pipelines may not cater to specific, unique, or 

novel requirements of certain projects. 

2. Learning Curve: There may still be a learning curve associated with using complex pipelines, 

which can be intimidating for new users. In addition, a user may need to learn a specific 

programming or workflow language they are not familiar with to interface with the pipeline. 

3. Inflexibility: Some pipelines may lack flexibility, forcing users to adapt their research questions 

or data collection methods to the requirements of the pipeline. 

2.2.1.2 Developing Your Own Pipeline 

Pros: 

1. Customization: Developing a pipeline from scratch allows researchers to tailor the tool to their 

specific needs, which can be crucial for novel or unconventional studies. 

2. Optimization: A custom pipeline can be optimized for the specific data types, quality, and 

analysis workflows of a particular project. It may also be optimized on a hardware level for 

computational efficiency. 

3. Innovation: Creating a new pipeline contributes to the field by providing solutions to 

unaddressed problems and sharing new methodologies with the community. 

Cons: 

1. Time and Resource Intensive: Designing and testing a new pipeline requires a significant time 

investment and substantial computational resources for testing and validation. 

2. Expertise Required: A high level of expertise in bioinformatics, programming, and statistics is 

necessary to develop a functional and reliable pipeline. 

3. Lack of Initial Validation: A newly developed pipeline lacks the extensive validation that 

established pipelines have, which may lead to skepticism or the need for extensive proof to gain 

acceptance during peer review and publishing. 

4. Maintenance and Support: Developers must commit to maintaining the pipeline, fixing bugs, 

and providing user support, which can be a continuous and exhaustive task. 
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2.2.1.3 Balanced Consideration 

Choosing whether to use a pre-existing pipeline or develop a new one is a decision that should be 

balanced against the goals, scale, and scope of the project. Pre-existing pipelines offer a plug-and-play 

solution with established support and community trust, suitable for standard and broad-scope projects. 

However, for cutting-edge research that pushes the boundaries of current knowledge, or where data 

types are novel or highly specialized, developing a new pipeline might be the best approach, despite the 

associated costs and efforts. 

In some cases, a hybrid approach may be beneficial, where researchers start with a pre-existing pipeline 

and modify or extend it to meet their specific needs. This can combine the advantages of having a stable 

base to work from with the flexibility to innovate and customize as required. 

Ultimately, the decision should consider the long-term benefits versus the immediate costs, with a clear 

understanding that the chosen approach aligns with the overarching research objectives and resource 

availability. 

2.2.2 List of Pre-existing Pipelines 

When searching the literature for published metabarcoding pipelines there will no shortage of options. A 

recent paper has reviewed 32 pipelines suitable for metabarcoding data analyses (Hakimzadeh et al., 

2023). While tools such as DADA2 and USEARCH can be considered “pipelines” in their own right, as they 

are in the aforementioned paper, for this section we focus on pipelines that encapsulate tools such as 

these to produce a more end-to-end and user-friendly solution. In addition, we limit the discussion to 

pipelines that have been updated within the last 3 years and offer something unique or substantive to 

the user, to avoid comparing pipelines with only minor or superficial differences. Therefore, we limit this 

comparison to a handful of established options and offer an explanation on how these pipelines 

differentiate themselves and why they may be worthy of consideration. 

QIIME 2 

QIIME 2 (Quantitative Insights Into Microbial Ecology 2) is an open-source software package that 

provides a suite of tools for managing, analyzing, and visualizing microbiome data, primarily from DNA 

sequencing studies (Bolyen et al., 2019). It is an updated version of the original QIIME software package, 

which was widely used for analyzing microbial communities, usually obtained through sequencing the 

16S rRNA gene, among other marker genes. Researchers may consider QIIME 2 if they want flexibility in 

which tools they use for an analysis as QIIME 2 offers multiple options for most workloads, such as 

offering both dada2 and deblur denoisers, as well as multiple options for taxonomic assignment. 

Strengths: 

1. Comprehensive Analysis: QIIME2 supports the entire analysis pipeline from raw data to the final 

visualization. 

2. Flexibility: It offers a wide range of plugins and can be adapted to different analysis needs. 

3. Community Support: A strong community of users and developers, which makes it easier to find 

help and resources. 

4. Interactive Visualizations: Visualization tools can help with understanding complex data. 
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5. Reproducibility: Tracking of data provenance aids in reproducibility and transparency of 

research. 

Weaknesses: 

1. Learning Curve: QIIME2 has a steep learning curve for those new to bioinformatics or 

metabarcoding. In addition, it introduces new concepts such as the .qza format not present in 

other pipelines. 

2. Computational Resources: Some analyses may require significant computational resources, 

which can be a limitation for some users. 

3. Updates and Changes: Frequent updates and changes in the software may require users to 

continuously learn new interfaces or workflows. 

4. Plugin Quality: While many plugins are available, the quality and maintenance can vary. 

5. Documentation: Although extensive, documentation can be overwhelming and may not cover all 

specific use cases or issues. 

Ampliseq 

The Ampliseq software package is a bioinformatics pipeline for processing amplicon sequencing data 

(Straub et al., 2020). It supports denoising and taxonomic assignment for various gene regions such as 

16S, ITS, CO1, and 18S, with phylogenetic placement capabilities. It's designed for both paired-end and 

single-end data from Illumina, PacBio, and IonTorrent sequencing technologies. Researchers may 

consider using Ampliseq if they are interested in using the Nextflow workflow management system, 

which offers a variety of benefits such as easy deployment on the cloud. 

Strengths: 

• Supports multiple sequencing platforms and amplicon types. 

• Built with Nextflow, ensuring portability and reproducibility using Docker/Singularity containers. 

• Automated quality control, read trimming, ASV inference, and taxonomic classification. 

• Includes features for excluding unwanted taxa and differential abundance testing. 

• Results are reproducible with defined resource allocations and persistent storage for 

benchmarking. 

Weaknesses: 

• A learning curve for setting up and running Nextflow and related container technologies. 

• Potential for high computational resource requirements depending on the dataset size. 

• Although QIIME 2 is wrapped, the full power and flexibility of QIIME 2 by itself is lost without 

substantial modification to the pipeline. 

APSCALE 
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APSCALE is another pipeline that can be used for merging paired-end sequences, trimming primers, 

filtering by quality, clustering, and denoising (Buchner et al., 2022). It can handle popular metabarcoding 

markers such ITS, 16S ribosomal RNA, and COI. The software differentiates itself by having a focus on 

accessibility, with GUI (graphical user interface) for biologists without extensive bioinformatics expertise, 

facilitating reliable analysis of metabarcoding data for biodiversity research and environmental 

management. 

Strengths: 

 

1. Platform Independence: Can be run on Linux, macOS, and Windows. 

2. User-Friendly: Offers both a command-line and a GUI version, with a simple installation process 

via Python's package installer, pip. 

3. Scalability: Designed to handle large datasets efficiently, with support for multithreading. 

4. Data Protection Compliance: Runs locally, catering to environmental agencies' data privacy 

needs. 

5. Comprehensive Data Processing: Provides a wide range of functions from paired-end merging to 

taxonomic assignment. 

6. Visualization and Summary Statistics: Enables visualization and statistical analysis within the 

GUI. 

Weaknesses: 

1. Dependency on Python: The GUI requires python to be installed and available which limits it’s 

ease-of-use for biologists with no command line experience. 

2. Manual Demultiplexing: Demultiplexing is not handled directly by APSCALE, requiring additional 

steps or software. 

3. Manual Installation of Dependencies for Windows: Windows users must manually install the 

zlib library. 

4. Local Data Storage: Large datasets may require significant local storage space as the GUI is not 

suitable for headless server use. 

MetaWorks 

MetaWorks is a bioinformatic pipeline designed for using a variety of metabarcoding markers such as 

16S, ITS, COI, rbcL, 12S, and 18S (Porter & Hajibabaei, 2022). The tool operates in a Conda environment 

and is automated using Snakemake, which minimizes user intervention and facilitates scalability, making 

it suitable for use on high-performance computing clusters or the cloud. It utilizes the RDP Classifier for 

taxonomic assignments with confidence measures. In addition, it provides curated databases for the 

various supported markers available to download for this classification. Researchers may consider this 

pipeline if they have a wide variety of markers in their data and want to make use of the Snakemake 
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workflow management system. As Snakemake workflows are python code, they may be more familiar to 

bioinformaticians compared to Nextflow workflows which are written in Groovy. 

Strengths: 

1. Flexibility: Supports a wide range of metabarcoding markers, not limited to microbial and fungal 

markers. 

2. Scalability: Designed for use on high-performance computing clusters, facilitating the analysis of 

large datasets. 

3. Automation: Utilizes Snakemake for pipeline automation, reducing the need for user 

intervention. 

4. Taxonomic Assignment: Uses the RDP Classifier for confident taxonomic assignments and 

supports multiple markers. Includes the databases for this assignment. 

5. Specialized Processing: Handles ITS regions by trimming conserved rRNA gene regions and offers 

pseudogene filtering for protein-coding genes. 

6. Reproducibility: MetaWorks promotes reproducible research with detailed documentation and 

versioned software via Snakemake. 

7. User Support: Provides extensive documentation, a step-by-step tutorial, a FAQ, and quickstart 

examples for new users. 

Weaknesses: 

1. Dependency on Reference Databases: The accuracy of taxonomic assignments is contingent on 

the comprehensiveness and quality of reference databases used. 

2. Data Handling Limitations: Although it's scalable, handling extremely large datasets may require 

significant computational resources and time. 

3. Specificity to Illumina Reads: The pipeline is optimized for Illumina sequencing data, which may 

not be applicable for data from other sequencing platforms without modifications. 

 

Table 1.0: Summary of strengths, weaknesses, and unique aspects of selected metabarcoding pipelines  

Pipeline QIIME 2 Ampliseq APSCALE MetaWorks 

Main Use Managing, analyzing, 

and visualizing 

microbiome data 

from DNA 

sequencing studies. 

Processing amplicon 

sequencing data with 

support for various 

gene regions. 

Merging paired-end 

sequences, trimming, 

filtering, clustering, 

and denoising for 

metabarcoding 

markers. 

Metabarcoding data 

analysis using various 

markers, optimized for 

high-performance 

computing clusters or 

cloud. 
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Flexibility Offers multiple 

options for analysis. 

Can be used with 

python or command 

line. 

Supports a variety of 

sequencing 

platforms and 

amplicon types. Built 

with Nextflow for 

portability. 

Platform-

independent, with a 

focus on accessibility 

and ease of use for 

non-experts. GUI and 

command-line 

options available. 

Supports a wide range of 

metabarcoding markers 

with Snakemake for 

portability. 

Strengths Comprehensive 

analysis pipeline, 

plugin flexibility, 

community support, 

interactive 

visualizations, 

reproducibility. 

Portability across 

systems, automated 

quality control and 

taxonomic 

classification, 

reproducibility, and 

resource-efficient 

benchmarking 

capabilities. 

Platform 

independence, user-

friendly GUI, 

scalability, data 

protection 

compliance, 

comprehensive data 

processing, 

visualization, and 

summary statistics in 

GUI. 

Flexibility in markers, 

scalability, automation, 

confident taxonomic 

assignments with curated 

databases, specialized 

processing for ITS and 

protein-coding genes, 

reproducibility, user 

support with extensive 

documentation. 

Weaknesses Steep learning curve, 

computational 

resources, frequent 

updates, variable 

plugin quality, 

extensive but 

overwhelming 

documentation. 

Setup learning curve, 

computational 

resources, reduced 

QIIME 2 flexibility 

without 

modifications. 

Python dependency, 

manual 

demultiplexing, 

additional steps for 

Windows users, local 

data storage space 

requirements. 

Dependence on 

reference databases, data 

handling limitations for 

very large datasets, 

specificity to Illumina 

data. 

Unique 

Aspects 

The most 

extensibility, proven 

research use, strong 

user and developer 

community. 

Nextflow workflow 

management system, 

easy deployment on 

cloud platforms. 

Data protection focus 

with local run 

capability, GUI for 

biologists without 

bioinformatics 

background. 

Snakemake workflow 

management system, the 

familiarity of Python 

code, optimized for 

Illumina data, includes 

specialized processing 

and filtering capabilities. 

2.3 Base calling 

Often an overlooked step, base calling is the process of converting raw signal data from sequencers into 

nucleotide sequences (typically in FASTQ format), and it is a critical and often first step in any 

bioinformatics workflow. Different sequencing platforms use different methodologies for reading DNA 

sequences, so the algorithms for base calling are platform-specific. In this section of the guidelines, we 

review the available base calling software for popular sequencing platforms, such as Oxford Nanopore 
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Technologies (ONT), Illumina, and Pacific Biosciences (PacBio). We discuss their strengths and 

weaknesses and provide guidelines for selecting the most appropriate software package for specific use 

cases. Generally speaking, the software provided by the companies supplying the DNA sequencing 

instruments is sufficient. 

2.3.1 Oxford Nanopore Technologies 

ONT sequencers generate long reads in real-time, making them well-suited for de novo genome 

assembly, metagenomics, and transcriptomics applications (Jain et al., 2016). The two main base calling 

software options for ONT are Guppy and Bonito. 

2.3.1.1 Guppy 

Guppy is the default base caller provided by ONT and uses a recurrent neural network (RNN) to convert 

raw electrical signals into nucleotide sequences (R. R. Wick et al., 2019). Guppy has a high base calling 

accuracy (>95%) and is optimized for GPU-based computing, which enables rapid processing of large 

datasets (R. R. Wick et al., 2019). 

Strengths: 

• High accuracy 

• GPU optimization for faster processing 

• Supports various sequencing modalities 

Weaknesses: 

• Closed-source and commercial, limiting customization options 

• Lower accuracy for homopolymeric regions (Loman et al., 2021) 

2.3.1.2 Bonito 

Bonito is an open-source base caller developed by ONT that employs a deep learning approach (Rang et 

al., 2020). Bonito has been shown to achieve a higher accuracy than Guppy, particularly for 

homopolymeric regions (Loman et al., 2021). 

Strengths: 

• Open-source and customizable (Rang et al., 2020) 

• Higher accuracy compared to Guppy (Loman et al., 2021) 

Weaknesses: 

• Slower processing compared to Guppy (Loman et al., 2021) 

• Limited support for different sequencing modalities (Rang et al., 2020) 

2.3.2 Illumina 

Illumina sequencers generate short, accurate reads, making them ideal for resequencing and variant 

detection applications (Van Dijk et al., 2018). They are the most dominant form of sequencing in the 

market and many applications use these sequencers (e.g. metabarcoding). The primary base calling 

software for Illumina was bcl2fastq and has now been superseded by BCL-Convert. 
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2.3.2.1 bcl2fastq 

bcl2fastq is the previous default base caller provided by Illumina, which converts raw base call (BCL) files 

into FASTQ format. It offers high accuracy, fast processing, and compatibility with Illumina’s various 

sequencing platforms using both 2- and 4-colour chemistries. 

2.3.2.2 BCL-Convert 

BCL-Convert is the updated default base caller provided by Illumina, intended to replace bcl2fastq. It is 

available to download for CentOS 7 and Oracle 8, as well as being the default base caller for the Illumina 

DRAGEN platform. 

Strengths: 

• High accuracy 

• Fast processing 

• Compatible with all Illumina platforms 

Weaknesses: 

• Closed-source and commercial, limiting customization options  

• Limited to Illumina sequencers 

2.3.3 Pacific Biosciences 

PacBio sequencers generate long reads with high consensus accuracy, making them suitable for de novo 

genome assembly, structural variant detection, and full-length transcript sequencing (Rhoads and Au, 

2015). The primary base calling software for PacBio is the SMRT Analysis software suite. 

2.3.3.1 SMRT Analysis 

SMRT Analysis is the default software suite provided by PacBio for base calling and downstream 

analyses. It includes tools for converting raw signal data into high-quality consensus sequences using the 

Hierarchical Genome Assembly Process (HGAP) (Chin et al., 2013). 

Strengths: 

• High consensus accuracy 

• Integrated with downstream analysis tools 

• Compatible with various PacBio platforms 

Weaknesses: 

• Closed-source and commercial, limiting customization options 

• Limited to PacBio sequencers 

2.3.4 Overall recommendations 

The choice of base calling software depends on the specific sequencing platform and research objectives. 

For ONT data, Guppy offers higher processing speed, while Bonito provides better accuracy, particularly 

for homopolymeric regions (Loman et al., 2021). For Illumina data, BCL-Convert is the preferred and 

official choice, replacing bcl2fastq, and offering high accuracy and compatibility with various Illumina 
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platforms (Illumina, 2023). For PacBio data, the SMRT Analysis software suite is the recommended 

option, providing high consensus accuracy and integration with downstream analysis tools (PacBio, 

2023). 

2.4 Quality control and filtering 

Metagenomics and metabarcoding workflows require rigorous quality control and filtering to provide 

actionable results. The accuracy and reliability of the results are highly contingent upon the quality of 

the input sequence data. Thus, effective quality control (QC) and filtering processes are indispensable for 

ensuring accurate downstream analyses. This section of the guidelines aim to highlight the importance 

of QC in metagenomic and metabarcoding studies, review prominent software tools for sequence data 

filtering, and provide insights into their respective strengths and weaknesses. 

2.4.1 Importance of Quality Control in Metagenomic and Metabarcoding Workflows 

Reliable sequence quality is paramount for several reasons, including accuracy, computational efficiency, 

and reproducibility. With respect to accuracy, low-quality sequences can lead to spurious OTU or ASV 

detection, incorrect taxonomic assignments, and misleading functional annotations. With respect to 

computational efficiency, filtering out poor-quality reads can considerably reduce the computational 

requirements of downstream analyses. This is particularly impactful when it comes to OTU/ASV 

workflows due to error correction models such as DADA2 scaling poorly with the number of sequences 

presented, significantly increasing the memory required. And finally, correct QC and filtering allows for 

reproducibility by ensuring consistent measures across different datasets, and thereby enabling more 

robust comparative studies. 

2.4.2 Quality Control Options for Different Sequence Data 

As described in the section on base calling, different sequencing platforms, such as Illumina, PacBio, and 

Oxford Nanopore Technologies (ONT), generate distinct error profiles, necessitating specific QC and 

filtering approaches to ensure quality results. Here we provide a broad overview and comparison of the 

available tools for QC and filtering based on the sequencer type.  

2.4.2.1 Illumina Data 

Illumina platforms, producing relatively short-read sequences, are characterized by systematic errors, like 

substitution errors, especially towards the ends of the reads. 

Software options for quality control of Illumina data: 

• FastQC: Provides an overview of sequence data quality. 

• Trimmomatic: Tailored for trimming Illumina sequence data, removing adapters and low-quality 

bases. 

• BBduk: Another powerful trimming tool, allowing for more flexibility and customization. 

• Cutadapt is specifically designed for adapter and quality trimming of short-read sequencing data 

from platforms like Illumina. 

• Fastp is another powerful tool for Illumina data QC created by OpenGene and written in C++, 

known for it’s quick processing speed. 
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Table 1: Comparison of available QC and filtering software for Illumina data 

Feature FastQC 
(Andrews, 
2010) 

Trimmomatic 
(Bolger et al., 
2014) 

BBduk 
(Bushnell, 
2014a) 

Cutadapt (C. 
Martin, 2011) 

FastP (S. Chen 
et al., 2018) 

Adapter 
removal 

No Yes Yes Yes Yes 

Quality filtering Basic Advanced Advanced Advanced Advanced 

Flexibility Low Medium High High High 

Strengths and Weaknesses: 

• FastQC is user-friendly but only provides a diagnostic overview. 

• Trimmomatic is commonly used for its efficiency, but its less flexible nature can limit certain 

workflows. 

• BBduk offers high customizability but has a steeper learning curve. 

• Cutadapt is highly precise in detecting and removing adapter sequences, which can often 

contaminate downstream analyses. While it can be used for long-read data like PacBio or 

Nanopore, it's optimized for short-read data. 

• FastP provides a comprehensive QC including error rate, GC content, and more. Additionally, it 

can generate intuitive visualizations for easier interpretation of data quality. It's more tailored 

towards standard Illumina libraries and might not handle non-standard libraries with the same 

assurance. 

2.4.2.2 PacBio Data 

PacBio's Single Molecule, Real-Time (SMRT) sequencing produces long reads but has a higher error rate, 

primarily insertions and deletions. 

Software options for PacBio data: 

• SMRT Analysis: The native software suite designed for QC and analysis of PacBio data. 

• Canu: A genome assembler that also offers error correction for PacBio data (Koren et al., 2017) 

Table 2: Comparison of available QC and filtering software for PacBio data 

Feature SMRT Analysis Canu 

Error correction Yes Yes 

Assembly No1 Yes 

 

1 PacBio’s website claims that SMRT Analysis can perform de novo assembly but we were unable to find any 
publications using this feature so we are not able to evaluate its abilities. 
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Quality visualization Yes Limited 

Strengths and Weaknesses: 

• SMRT Analysis provides a comprehensive suite of tools but might be excessive for pure QC 

purposes. 

• Canu is versatile but can be resource intensive. 

2.4.2.3 Oxford Nanopore Technologies (ONT) Data 

ONT sequencing, like PacBio, provides long reads but has unique error profiles, mainly substitutions. 

Software options for ONT data: 

• NanoPlot: Offers quality visualization for ONT data (De Coster & Rademakers, 2023) 

• Porechop: Used for adapter trimming (R. Wick, 2018) 

• Medaka: Produced by Oxford Nanopore itself, offers consensus calling and variant calling. 

Table 3: Comparison of available QC and Filtering Software for ONT Data 

Feature NanoPlot (De Coster & 
Rademakers, 2023) 

Porechop (R. Wick, 
2018) 

Medaka (Medaka, 
2018) 

Adapter removal No Yes No 

Quality visualization Yes No No 

Consensus/Variant 
calling 

No No Yes 

 

Strengths and Weaknesses: 

• NanoPlot is excellent for data visualization but doesn't provide modification tools. 

• Porechop is efficient for adapter removal but lacks comprehensive QC features. 

• Medaka is powerful for improving sequence accuracy but is not a standalone QC tool. 

2.4.3 Considerations when Choosing Software Packages 

The choice of software should be predicated on the sequencing platform used, specific QC needs, and 

computational resources. Here are some general considerations: 

1. Error Profile: Different tools are optimized for distinct error profiles, so understanding the nature 

of errors in the dataset is crucial. 

2. Usability: While flexibility and customizability are valuable, they might come at the cost of user-

friendliness. 
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3. Integration: Tools that seamlessly integrate with popular downstream analysis pipelines are 

advantageous. 

2.4.4 Overall recommendations 

Robust quality control is pivotal in harnessing the full potential of metagenomic and metabarcoding 

studies. Given the rapidly evolving landscape of sequencing technologies and associated software tools, 

continuous benchmarking and evaluation of QC tools are imperative. Selecting the appropriate software 

package necessitates a comprehensive understanding of the sequencing data's unique characteristics 

and the specific requirements of the research question. Here is a list of general recommendations based 

on sequencer type.  

Table 4: Overall recommendations for each sequencing platform 

Sequencing 
Platform 

QC and Filtering 
Tool 

Strengths Weaknesses 

Illumina Cutadapt (C. 
Martin, 2011) 

Accurate adapter trimming, 
user-friendly, open-source 

Designed primarily for Illumina, 
might not be ideal for long-reads 

Illumina Fastp (S. Chen 
et al., 2018) 

Comprehensive QC, ultra-fast, 
provides visualizations 

Limited to Illumina data, not ideal 
for non-standard libraries 

Nanopore Porechop (R. 
Wick, 2018) 

Designed for long-reads, 
adapter trimming 

Less robust for quality filtering 

PacBio SMRT Analysis Long-read correction, 
assembling, trimming 

Compressive list of features 
presents overhead when only used 
for QC 

2.5 Denoising 

Single nucleotide variants (SNVs) can be caused by a number of factors such as PCR or sequencer 

artifacts. With traditional alignment-based methods in the context of whole genome sequencing, SNVs 

are unlikely to drastically alter the accuracy of the alignment. However, with targeted sequencing 

methods where multiple similar sequences are being compared and assigned taxonomy, these small 

errors have the potential to lead to incorrect taxonomic assignment. Fortunately, methods to account for 

this have been developed, most notably clustering similar sequences into “operational taxonomic units” 

(OTUs) and removing errors through denoising into “amplicon sequence variants” (ASVs). This section of 

the guidelines will give a broad overview of the topic, as well as offer software and workflow 

recommendations. 

2.5.1 OTUs vs ASVs 

OTU clustering is a method used to minimize sequencer errors in targeted sequencing. The OTU 

approach overcomes PCR and sequencing errors that may be present within metabarcoding datasets by 

clustering together highly similar sequences (for example, with >98% sequence identity), with the most 

dominant sequence from each cluster used for taxonomic assignment. OTUs may correspond to 

ecological species, niche uniqueness, or biological species (i.e., unique reproductive pools) (Cristescu, 

2014). There are three types of OTU clustering (Edgar, 2017). The first one, de novo clustering, is 

computationally complex and must be repeated when data are added or removed from the study. The 
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second one, closed-reference clustering, is more efficient and uses a reference database of target gene 

sequences from known taxa. However, because it is dependent on reference sequences it can be biased 

and reads that do not closely match a reference sequence will be discarded. The third method, open-

reference clustering, is a combination of de novo and closed-reference clustering and avoids the loss of 

novel sequences. 

In contrast to OTUs, ASVs keep each unique sequence separate but filter out potential PCR and 

sequencing errors based on built-in error models. While overall ecological patterns derived from 

metabarcoding data tend to be fairly robust to the choice of approach (Glassman & Martiny, 2018), ASVs 

are more reproducible, and therefore more cross-comparable where linking relies on sequence identity 

rather than species names (Callahan et al., 2017). 

There is considerable debate in the field regarding which method is more appropriate. Some papers have 

suggested that the field should be moving towards an ASV approach due to its ability to provide a more 

precise identification of species and a more detailed picture of diversity within a sample (Callahan et al., 

2017; Porter & Hajibabaei, 2020). However, other authors have suggested the picture is more nuanced, 

and each method carries its own trade-offs (Chiarello et al., 2022). While OTUs are relatively 

computationally fast and easy for both generation and comparison between samples and studies, they 

can carry a significant risk of reference bias and loss of novel sequences when using closed-reference 

clustering. Moreover, clustering too coarsely can merge reads from closely related species into single 

OTUs, leading to ambiguous matches when assigning taxonomy. For this reason, the clustering 

thresholds for OTU generation need to be empirically established in a marker- and taxon-specific context 

(Alberdi et al., 2018). ASVs, on the other hand, are computationally slow but will retain all sequences 

from the sample and have no risk of reference bias as they are generated reference-free. 

2.5.2 Software Packages for generating OTUs 

Operational Taxonomic Unit (OTU) clustering is a cornerstone of many bioinformatics pipelines, 

especially in metabarcoding and metagenomics research. The process involves grouping similar 

sequences together that likely originate from the same species or a set of closely related species. The 

selection of an appropriate software tool for OTU clustering is essential for ensuring accuracy, precision, 

and computational efficiency in the bioinformatics workflow. 

2.5.2.1 QIIME/QIIME2 (Quantitative Insights Into Microbial Ecology) 

QIIME is a complete pipline that arose from the study of microbiome data, but is also applicable to 

metazoan environmental genomics. It is modular, allowing new capabilities to be introduced into the 

pipeline through plugins, of which there are already a sizable number that have been contributed by the 

community (see: https://library.qiime2.org/plugins/). 

Strengths: 

• Comprehensive tool with end-to-end pipeline from raw sequence data to microbial community 

analyses. 

• Highly customizable and extensive community support. 

• Integration with other tools and databases. 

https://library.qiime2.org/plugins/
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• Wraps other clustering algorithms such as Mothur and UCLUST 

Weaknesses: 

• Learning curve due to its vast set of features. 

• Heavy computational resources may be required for large datasets. 

Reference: (Bolyen et al., 2019; Caporaso et al., 2010) 

2.5.2.2 Mothur 

Like QIIME, Mothur is a pipeline that arose from the microbiology community but it is also applicable to 

metazoan metabarcoding data. Unlike QIIME, it is a single monolithic software program where most of 

the development has been performed by a single individual and development has slowed since 2022, 

although at the time of writing the most recent release was from May 2024 (version 1.48.1). 

Strengths: 

• Open-source and offers a comprehensive suite of tools. 

• Most highly-cited software package for 16s rRNA analysis. 

• Highly flexible with scriptable commands. 

Weaknesses: 

• Can be computationally intensive on large datasets. 

• The command-line interface might be challenging for beginners. 

Reference: (Schloss et al., 2009) 

2.5.2.3 UCLUST (part of USEARCH) 

UCLUST is part of the USEARCH package, which is commonly used in the academic community because 

of the free licensing for educational use. However, for commercial use the software is not free. 

Strengths: 

• Fast and efficient, suitable for large datasets. 

• High accuracy in clustering. 

• Convenient for high-throughput sequencing data. 

Weaknesses: 

• Proprietary for the full version. 

• Free only for academic use; commercial use requires a paid license. 

• Limited features compared to comprehensive tools like QIIME2 and Mothur. 

Reference: (Edgar, 2010) 
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2.5.2.4 VSEARCH 

VSEARCH is an open-source alternative to UCLUST/USEARCH; the algorithms have been re-implemented 

from the descriptions in the original papers. The output is similar to but not exactly the same as the 

official USEARCH package. 

Strengths: 

• Open source so the code can be audited and modified if desired. 

• Handles noise well and offers dereplication, sorting, and chimera detection. 

• Capable of working both 32-bit and 64-bit processors. 

Weaknesses: 

• Slower than UCLUST/USEARCH on large datasets. 

Reference: (Rognes et al., 2016) 

2.5.3 Comparative Analysis of Software Packages 

2.5.3.1 Performance and Scalability 

For large datasets, UCLUST stands out for its efficiency, followed by VSEARCH. QIIME2 and Mothur can 

handle comprehensive analyses, but their performance might be a limiting factor for exceptionally large 

datasets. 

2.5.3.2 Accuracy 

All tools have shown comparable accuracy, but the precision can vary based on the type and quality of 

input data. Mothur and QIIME2 are often highly regarded due to their comprehensive nature and 

detailed protocols that guide users through the quality control steps. 

2.5.3.3 Flexibility and Integration 

QIIME2's integration with various databases and tools makes it a one-stop solution for many researchers. 

Mothur's scripting capabilities provide a high level of flexibility for custom analyses. 

2.5.3.4 User Interface and Learning Curve 

QIIME2, being comprehensive, has a steeper learning curve. Mothur's command-line interface is robust 

but may be intimidating for novices. UCLUST and VSEARCH are more straightforward in their function but 

might require integration with other tools for a complete pipeline. 

2.5.4 Best Practices for OTU Clustering 

1. Quality Control: Always filter and trim raw sequences to remove low-quality bases, adaptors, 

and potential contaminants. 

2. Dereplication: Identifying sequences that are identical to each other and removing duplicates to 

reduce the size of the dataset. 

3. Choose Appropriate Similarity Threshold: Ideally this should be equal to or less than the 

intraspecific variation for the particular gene segment that was sequenced, but greater than the 
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inter-specific distance. A 97% similarity threshold is often used for bacteria and archaea, but this 

can vary depending on the research question.  

4. Check for Chimeras: Chimeric sequences (see the Glossary) can distort downstream analyses. 

Tools like UCHIME (part of USEARCH and VSEARCH) or those built into Mothur and QIIME2 can 

be used for chimera checking. 

5. Consider the Nature of Data: For instance, if working with ITS sequences, consider software 

specifically designed for such data due to its variability. 

6. Computational Resources: Ensure you have access to the necessary computational power, 

especially for large datasets. Some tools can be parallelized or run on high-performance 

computing clusters. 

Table 5: summary of strengths and weaknesses for OUT clustering packages 

Software Strengths Weaknesses 

QIIME2 (Bolyen et 
al., 2019) 

- Comprehensive tool.  

- Highly customizable.  

- Integration with other tools, 
algorithms, and databases. 

- Learning curve.  

- Needs heavy computational resources 
for large datasets. 

Mothur (Schloss et 
al., 2009) 

- Open-source with comprehensive 
tools.  

- Responsive community.  

- Flexible scripting. 

- Computationally intensive on large 
datasets. 

- Command-line interface may be 
challenging for beginners. 

UCLUST (Edgar, 
2010) 

- Fast and efficient.  

- High accuracy in clustering. 

- Good for high-throughput 
sequencing data. 

- Proprietary and license fees are 
required for the full version 

- Limited to 32bit for the free version. 

VSEARCH (Rognes et 
al., 2016) 

- Open-source alternative to UCLUST.  

- Handles noise and offers chimera 
detection. 

- Slower than UCLUST on large datasets. 

- Not as well tested as UCLUST from 
USEARCH 

2.5.5 Software Packages for generating ASVs 

Rather than grouping sequences into operational taxonomic units based on arbitrary thresholds, ASVs 

aim to resolve sequences at single-nucleotide resolution. This offers more accurate and reproducible 

results. In this section, we will evaluate various software options available for generating ASVs, 

emphasizing their strengths, weaknesses, and applicability to different types of data. 

2.5.5.1 DADA2 

Description: 
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DADA2 is a model-based approach for correcting sequencing errors in Illumina data, providing single-

nucleotide resolution. 

Strengths: 

• Accuracy: DADA2 tends to have lower error rates in benchmarking studies compared to other 

methods. 

• Accuracy for rare species: It can differentiate between very closely related taxa. 

• Integrated Workflow: DADA2's R package includes functions for quality filtering, dereplication, 

and taxonomic assignment. 

Weaknesses: 

• Computationally Intensive: Requires significant computational resources for larger datasets. 

• Illumina-specific: Optimized for Illumina data and might not perform as well with other 

platforms. 

Reference: (Callahan et al., 2016; Nearing et al., 2018) 

Applicability: 

Optimal for Illumina amplicon datasets, especially when high-resolution taxonomic differentiation is 

required. 

2.5.5.2 Deblur 

Description: 

Deblur employs a de-novo approach to obtain ASVs resolution by removing sequencing errors. 

Strengths: 

• Speed: Faster than DADA2, particularly with large datasets. 

• Resolution: Offers sub-OTU resolution, useful for identifying closely related organisms. 

• Noise Reduction: Uses a known error model to remove noise from the dataset. 

Weaknesses: 

• Strict Quality Filtering: Rather than correcting identified errors, it eliminates reads that are 

determined to contain errors. This can result in the loss of a significant portion of the data. 

• Dependency: Dependent on QIIME2 for full pipeline functionality. 

Reference: (Nearing et al., 2018) 

Applicability: 

Best suited for Illumina datasets where speed is a priority, and researchers are working within the 

QIIME2 environment. 
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2.5.5.3 USEARCH – UNOISE3 

Description: 

UNOISE3 is a part of the USEARCH suite and provides error correction to generate ASVs. 

Strengths: 

• Speed: It's a faster method, particularly noticeable in large datasets. 

• Less Stringent Quality Filtering: Potentially retains more data than Deblur. 

• Broad Applicability: Can be used with multiple sequencing platforms. 

Weaknesses: 

• Less Resolution: Although it captures ASVs, it may not provide as high resolution as DADA2. 

• License Requirement: USEARCH is not open-source, and a license is required for commercial use 

for the 64-bit version. 

Reference: (Antich et al., 2021; Nearing et al., 2018) 

Applicability: 

For researchers with datasets from various sequencing platforms and those already familiar with the 

USEARCH ecosystem. 

2.5.5.4 VSEARCH – UNOISE3  

Description: 

Open-source implementation of UNOISE3 included as part of the VSEARCH package. 

Strengths: 

• Open-source: Freely available without licensing fees. 

• Chimera Removal: Includes an open source implementation of the uchime3_denovo algorithm 

as well. 

• Broad Applicability: Can be used with multiple sequencing platforms. 

Weaknesses: 

• Validation: Most papers and researchers are using UNOISE3 from USEARCH, this alternative 

implementation may not be as well tested. 

Reference: (Rognes et al., 2016) 

Applicability: 

For researchers with large datasets who are unable to access the 64-bit version of USEARCH. 
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2.5.6 Best Practices for ASV denoising 

2.5.6.1 Quality Control and Filtering 

Before denoising, raw sequences should undergo quality control: 

• Use tools like FastQC or MultiQC to assess the quality of your raw data. 

• Trim or remove low-quality bases from the ends of sequences. Programs like Cutadapt or 

Trimmomatic can be employed. 

• Filter out sequences below a certain quality score threshold. 

• Remove any non-biological sequences, such as adapters or primers. 

2.5.6.2 Optimize Parameter Choices 

Most ASV denoising tools offer various parameters that influence the denoising process. Depending on 

the dataset's characteristics, researchers might need to: 

• Adjust error rate parameters. This can prevent over- or under-clustering, controlling the 

number of false positives and negatives. 

• Customize length trimming parameters, especially if amplicon lengths are variable. 

2.5.6.3 Track and Visualize Denoising Metrics 

• Monitor the number of sequences retained or discarded during each step of the denoising 

process. Sudden and significant drops can indicate issues that require troubleshooting. For 

example, if the target amplicon is ~250 bases in length and the read length for forward and 

reverse read sequencing is 150 bases, one would expect that the vast majority of reads will 

merge successfully. If a large proportion of a sample’s reads are lost at the merging step, it 

could be an indication that a high amount of off-target DNA was sequenced. 

• Utilize visualization tools like those provided within QIIME2 or R packages to inspect 

denoising results. 

2.5.6.4 Consider Biological Context 

While denoising software relies on mathematical models to reduce errors, always keep the biological 

context in mind: 

• Does the data contain closely related taxa? If so, high-resolution methods like DADA2 may be 

particularly valuable because it can perform precise error correction at the individual 

nucleotide level. Conversely, OTU clustering is typically performed at a sequence similarity of 

98-99% which could create ambiguous matches within some taxonomic groups (e.g., some 

members of the Salmonidae fish family are very difficult to distinguish using common DNA 

barcoding markers because the sequence similarity is so high. 

• Be wary of discarding rare ASVs outright, as they could represent legitimate low-abundance 

organisms. Ironically, these may be of most interest (e.g., rare or endangered species). 
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2.5.6.5 Regularly Update Software 

• Denoising algorithms and software tools undergo regular updates which can introduce new 

features, optimizations, or bug fixes. 

• Ensure you are using the latest stable version of your chosen software. 

• Review changelogs or release notes for significant updates or parameter changes that might 

affect your analyses, or may affect comparisons with results generated using previous 

software versions. 

2.5.6.6 Denoising with Different Sequencers 

While many denoising tools are optimized for Illumina data, researchers using other platforms should: 

• Seek tools or parameters specifically designed for those platforms, such as Medaka for 

Oxford Nanopore Technologies (Medaka, 2018). 

• Consider cross-referencing with platform-specific forums or communities for insights into 

platform-specific quirks or challenges. 

2.5.6.7 Documentation and Reproducibility 

• Thoroughly document every step of your denoising process, including software versions and 

parameter choices. 

• Whenever possible, use workflow management tools like Snakemake (Köster & Rahmann, 

2012)or Nextflow (Di Tommaso et al., 2017) to ensure reproducibility. 

2.5.6.8 Benchmarking and Validation 

• If possible, include a mock community with known composition in your sequencing run. This 

allows you to validate the denoising process and assess the accuracy of your ASVs. 

• Compare denoising results from multiple software options to gauge consistency and 

potential biases. 

Table 6: Summary of strengths and weaknesses for ASV denoising packages 

Software Strengths Weaknesses 

DADA2 
(Callahan et al., 
2016) 

- Comprehensive R software package.  

- Highly customizable.  

- Accurate for rare species detections 

- Need R programming knowledge if 
not using a wrapper  

- Needs heavy computational 
resources for large datasets 

- Slower than other options 

- Additional workarounds may be 
needed when working with quality 
binned data 
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Deblur (Nearing 
et al., 2018) 

- Open-source 

- Fast and efficient 

- Integrated with QIIME2 

- May discard more data than other 
options 

- Command-line interface outside of 
QIIME2 has not been updated for 
some time 

UNOISE3 (Edgar, 
2010) 

- Fast and efficient.  

- Good for high-throughput sequencing data 

- Handles denoising and offers chimera 
detection via uchime3_denovo. 

- Works well with various sequencer types, 
such as the NovaSeq 

- Proprietary and license fees are 
required for the full version 

- Limited to 32-bit for the free version. 

VSEARCH 
(Rognes et al., 
2016) 

- Offers open-source alternative to UNOISE3 
algorithm.  

- Includes open source alterative implantation 
of the chimera removal algorithm 
uchime3_denovo 

- Not as well tested as UNOISE3 from 
USEARCH 

2.5.7 Guides for Selected Denoising Software  

2.5.7.1 Guide for UNOISE3 

UNOISE3 is the latest denoising algorithm by Robert Edgar included in the proprietary software package 

USEARCH (Edgar, 2010). There is also an open source implementation of the algorithm in the program 

VSEARCH (Rognes et al., 2016).  

The general UNOISE workflow involves truncating reads to the same length (although this step is not 

strictly necessary when reads are paired-end and merged), merging, dereplicating, running the UNOISE 

algorithm, and removing chimeras. The ASVs produced by UNOISE are highly dependent on the selection 

of an alpha parameter. The alpha parameter is a value that controls the shape of the error distribution in 

the UNOISE algorithm. Specifically, it determines the degree of randomness or variability in the noise 

introduced by the algorithm. A higher value of alpha leads to a more variable error distribution, while a 

lower value of alpha leads to a less variable error distribution. In practical terms, a higher value of alpha 

means that the UNOISE algorithm is more likely to include random sequencing errors as part of the 

output, which can result in more diverse sequences being detected. However, this can also increase the 

likelihood of false positives and reduce the accuracy of the resulting data. On the other hand, a lower 

value of alpha results in a more conservative error model, which can be more accurate but may miss 

some rare sequences. In general, the choice of the alpha parameter depends on the specific application 

and the desired trade-off between accuracy and sensitivity. A common approach is to try a range of 

alpha values and evaluate the results on a validation set to determine the optimal value for the given 

dataset and research question. A literature review may be conducted as well to determine the 

recommended alpha parameter for a given dataset. For COI data for example, other papers have 

observed an alpha parameter of 5 works reasonably well (Antich et al., 2021). 
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2.5.7.2 Guide for DADA2 

DADA2 is a denoising algorithm (Callahan et al., 2016). Comparisons with UNOISE3 and Deblur have 

shown DADA2 to have the most sensitivity in discerning rare low abundance ASVs. DADA2 has also been 

shown to be the most resource intensive compared to UNOISE3 and Deblur, with a higher run time and 

RAM requirements. The general workflow of DADA2 is similar to UNOISE3, truncating reads to the same 

length, merging, dereplicating, running the DADA2 interface and removing chimeras. As DADA2 is 

installed as an R package, it contains R functions for these tasks that can be glued together as part of an 

R script. While in most cases, the run time with DADA2 will be acceptable, with large datasets, it is 

recommended to delegate tasks such as truncation and merging to more performance optimized 

applications such as FastP, and then importing the data to run the DADA2 interface. Furthermore, should 

one wish to run DADA2 pipeline without writing R code, easy to use wrappers such as Dadaist2 can be 

used to conveniently run DADA2, as well as providing additional features such as the ability to generate 

QC reports in a format compatible with MultiQC (Ansorge et al., 2021). Special attention should be given 

to running DADA2 with sequencer types such as the NovaSeq. As the NovaSeq bins quality scores, they 

do not represent a continuous distribution and this can affect the error calculations. 

2.5.8 Novel Denoisers 

Some additional denoisers have been created since the introduction of UNOISE3 and DADA2. Some offer 

unique ideas or user friendly features such as NG-Tax 2.0, which easily plugs-in to the Galaxy ecosystem 

(Poncheewin et al., 2020). While ideas presented in these novel denoisers can be compelling, newer 

denoisers lack the battle-tested validation of established denoisers such as DADA2 and UNOISE3 for a 

wide variety of markers in metabarcoding studies. In addition, future developments for these software 

packages can be uncertain; software arising from academic labs often becomes abandoned after 

students graduate or funding dries up. Therefore, it is recommended to use established denoisers for 

most use cases and only deviate from the established packages if a novel denoiser offers a benefit to the 

research question that is not offered by existing packages such as DADA2 or UNOISE3. 

2.6 Chimera removal 

Chimeras occur during the PCR step when two strands of DNA that are not the correct complements of 

each other become joined together, creating a new amplicon that was not present in the original sample. 

This capability is built into tools that perform denoising/OTU clustering so the choice of tool will be 

guided by the choice of tool used in the previous step. Briefly, DADA2 implements the 

“removeBimeraDenovo” function (Callahan et al., 2016), USEARCH  has a “uchime3_denovo” command 

(Edgar, 2010), and this same command is also implemented in VSEARCH (Rognes et al., 2016). 

2.7 Taxonomic assignment 

2.7.1 Introduction 

If there were no PCR or sequencing errors in metabarcoding sequence reads, and if reference databases 

were complete and contained exemplars for all intraspecific variation, and these reference sequences 

were distinct from those from congeneric species, then taxonomic assignment would be an easy task: it’s 

a simple matching exercise. Unfortunately, reality is not so simple, so it is necessary to use algorithms 

that find the most probable taxonomic assignment for any given query sequence. 
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In cases where sequencing/PCR errors are minimal and the target species is represented in the reference 

database and can be unambiguously distinguished from closely-related species, the choice of algorithm 

is somewhat arbitrary—all will come to the correct conclusion. But this is not the case for the majority of 

reads from a typical metabarcoding study, and algorithm choice can have an impact on the taxonomic 

assignments made to the data. 

Choice of taxonomic assignment method and taxon acceptance thresholds (i.e., the number or 

proportion of sequence reads required for an OTU/ASV to be retained in the final dataset) can alter the 

interpretation of species detections. Optimal parameter choices will depend on the characteristics of the 

marker used, the completeness of the reference database, and the purpose for which the data is to be 

used. For instance, if the aim is to assess overall ecological patterns, then more aggressive filtering may 

be chosen to reduce noise while there is a relatively low cost for inaccurate taxonomic identification. 

However, if the aim is to detect invasive or endangered species, even very weak detections may be 

considered, and each species needs to be identified with a high degree of accuracy. 

In general, there is a dichotomy in the choice of taxonomic assignment algorithm (Table 7): there are 

methods that are highly accurate but have a slow execution speed (phylogenetic approaches), those that 

are fast but tend to have lower accuracy (k-mer based approaches), and those that fall in between in 

terms of both accuracy and execution speed (sequence similarity-based approaches). 

In the following sections we will discuss each of these methods in greater depth and make 

recommendations about which methods are most appropriate in which situations. 

Table 7: A dichotomy exists in taxonomic assignment algorithms. Some algorithms are very fast, but at the expense of accuracy. 
While other methods are very accurate but can be infeasibly slow to run. 

Category Tool(s) Speed Accuracy 

K-mers Kraken2 (D. E. Wood et al., 2019), RDP classifier (Maidak et al., 
1996), QIIME2 feature classifier (Bokulich et al., 2018) 

Very 
high 

Very low 

Similarity 
search 

MegaBLAST (Z. Zhang et al., 2000) High Low 

Discontiguous MegaBLAST (Altschul et al., 1997) Medium Medium 

BLASTN (Altschul, 2014) Low High 

Phylogenetic EPA-NG (Barbera et al., 2019), ProTax (Somervuo et al., 2016) Very low Very 
high 

2.7.2 K-mer (machine learning) based approaches 

With these techniques, classification is based on the number of k-mers (i.e., a DNA “word” of length k) a 

query sequence has in common with a reference sequence. Then simple Bayesian statistics can be used 

to evaluate the posterior probability of the number of matching k-mers between a query and a target. A 

convenience of these models is that they can be trained to make taxonomic assignments at multiple 

levels. For example, if a species-level match is not possible with the reference database then the model 

can assign genus, family, or higher orders of taxonomy based on its probabilistic model. 

Popular tools that implement this technique include the QIIME2 feature classifier (Bokulich et al., 2018), 

the RDP classifier (Maidak et al., 1996), and kraken2 (D. E. Wood et al., 2019). 
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Another advantage of these techniques is that they are very fast when assigning taxonomy; kraken2, for 

example, can assign taxonomy to thousands of reads per second on standard computer hardware. 

However, it is very slow and computationally intensive to build the reference databases. Again, in the 

case of kraken2, a large memory machine (i.e., more than 256GB of RAM) is required to build a reference 

database from GenBank and the process takes several days. In another example, QIIME2’s classifier 

required more than 500GB of RAM and two days to train a model to identify a relatively small reference 

database of fish species (Hleap et al., 2021). Pre-computed reference libraries are available which 

removes this burden. For example, the Midori2 database can be downloaded in formats suitable for use 

with the QIIME2 and RDP classifiers (Leray et al., 2022). This, combined with the speed of execution of 

taxonomy assignment makes this method very popular. 

Like all machine learning algorithms, a significant drawback to these techniques is that they are highly 

influenced by their training set. For example, if a model is trained solely on fish COI sequences, it may 

think that a particular k-mer is unique to a species of fish with 100% confidence. But if it had been 

trained on a broader dataset, perhaps that k-mer also appears elsewhere in the evolutionary tree—a 

bacterium or another animal, for example. This is why, ironically, these approaches become less accurate 

when a larger reference database is used (Nasko et al., 2018). 

Because of these drawbacks, we recommend using these classifiers only in cases where speed is 

paramount or as a form of independent verification of a taxonomic assignment performed using a 

different algorithm. 

2.7.3 Sequence similarity 

Probably the most common set of taxonomic assignment techniques are based on sequence similarity 

searches. Here, alignments are performed between the query sequence and all the members of a 

reference database to find the best match. Because comprehensive reference databases (like GenBank) 

can be very large, and the number of sequences arising from a metabarcoding study can also be very 

large, this means many billions of pairwise alignments may need to be performed if a naïve approach 

were taken. To speed up this process, software tools have implemented heuristics and do not perform 

complete alignments. The most famous of these tools is BLAST (Altschul, 2014), which pre-processes the 

query sequence to built a lookup table that enables it to quickly assess whether there exist short, high-

scoring ungapped alignments between the query sequence and a potential target. In this way, a large 

proportion of the reference database can be quickly eliminated from further consideration. In its next 

step, BLAST attempts to extend these ungapped “seeds” into a fully gapped alignment. By default, 

nucleotide BLAST (BLASTN) uses 11-mer seeds. An updated algorithm, MegaBLAST (Z. Zhang et al., 

2000), sets this seed length at 28 bases by default, leading to a 10x speed-up over BLASTN but at the 

sacrifice of sensitivity: MegaBLAST is very accurate at finding closely-related targets in the reference 

database but it is far less accurate at finding more distantly-related sequences. What this means in 

practice is that species-level matches are reliable, but if the reference database is incomplete and you 

are trying to make a family- or order-level match to your query sequence then BLASTN is the better 

choice. Yet another algorithm in the BLAST family is “discontiguous megaBLAST” (Altschul et al., 1997). 

Here, the “seed” has gaps in it so not every position needs to match exactly. This is particularly useful in 

coding sequences where the third codon position is highly variable because it can mutate without 

changing the encoded protein. Discontiguous megaBLAST is slower than megaBLAST but faster than 
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BLASTN, and it has greater sensitivity than megaBLAST but less so than BLASTN, so it is somewhat of a 

compromise between these extremes. 

One potential problem with alignment-based approaches to assigning taxonomy is illustrated in Figure 2. 

Here, a full-length COI sequence was queried against GenBank, which does not (yet) contain this 

sequence. In reporting results, BLAST has prioritized the length of the query sequence that matches a 

target above the sequence similarity of the two sequences (note that the top hit matches the full length 

of the query sequence but at only 90% identity). The correct results appear lower, matching only 42% of 

the length of the query sequence but at nearly 100% identity because these records are truncated COI 

sequences. There are two main approaches to solving this problem: (1) the BLAST results can be sorted 

by descending sequence identity rather than the default sort order of descending BLAST score; or (2) the 

query sequence can be modified so its length matches the most common barcoding amplicons 

represented in the reference database (i.e., in the case of COI the sequence could be truncated to the 

first 650 nucleotides). 

 

 

Figure 2: Alignment-based approaches can produce erroneous results if used naively. Here, the query sequence is a full-length 
COI gene for P. montagui. But the BLAST algorithm gives a higher score to full-length matches of closely related species (top four 
hits) than to shorter COI fragments from the correct species (the bottom five hits). 

Another consideration with similarity searches is that one should generally not simply choose the “best 

hit” from the results. There will almost always be a “best hit”, even if the similarity is not particularly 

high. If the query sequence’s best match to a target has only 80% similarity, for example, the 

evolutionary distance is clearly too great to be considered a species-level match. To solve this problem, a 

“lowest common ancestor” approach can be taken: a set of best matches is gathered and then 

consensus among these top hits is used to assign taxonomy at different levels. Unfortunately, the 

threshold for what set of matches is “good enough” to be part of the consensus set is not easily 

determined because it’s dependent on the intra-specific variation within a particular marker for a 
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particular taxon. The level of consensus required is also somewhat arbitrary. It is good practice to repeat 

the analysis for a subset of the data over a range of parameters to estimate the stability of the species 

assignments being made. QIIME2 (Bolyen et al., 2019) has built-in plugins that can generate consensus 

taxonomy from either BLAST or vsearch (Rognes et al., 2016) results. A potential pitfall with this 

technique is database bias: records from population genetics studies may lead to dozens or hundreds of 

sequences from the same species being deposited into public databases, which will bias the pool of 

results from which the consensus is derived. One way to fix this is to have only one exemplar sequence 

from each species in the reference database, similar to NCBI’s RefSeq database (Pruitt et al., 2007). 

2.7.4 Phylogenetic approaches 

Sequence similarity approaches simply look at the overall difference between the query sequence and a 

target, but they do not consider where those differences occur within the context of sequence variation 

across all similar sequences. This is where phylogenetic approaches are much stronger. They take an 

alignment of input sequences and create an evolutionary model that best explains the relationship 

between these sequences. It can then place the query sequence in the position within the evolutionary 

tree that has the greatest likelihood, according to this model (Figure 3). 

 

Figure 3: Reference sequences are used to build a phylogenetic tree using maximum likelihood methods (here, composed of 
mouse, rat, chimp, and human sequences). Then all possible placements of the query sequence (Q) on this tree can then be 
evaluated within the context of the evolutionary model, and an appropriate taxonomic assignment can be made. 

There is little doubt that phylogenetic approaches to taxonomy assignment are the most accurate. An 

additional benefit is that it is possible to use phylogenetic tools like bootstrapping to estimate the 

confidence of the assignment of a query sequence to a particular part of the taxonomic tree. 

Unfortunately, these techniques are also the most computationally intensive which is largely why they 

are not used more frequently. The authors of EPA-NG, the most advanced software for this technique, 

used a 2048-core supercomputer to assign taxonomy to 1 billion reads and this took 7 hours—and this is 

with the benefit of having a reference tree to map against rather than having to generate a reference 

tree from scratch (Barbera et al., 2019). For context, an S4 flow cell for the Illumina NovaSeq 6000 can 

produce 8-10 billion reads per run. On a dataset this size, taxonomic assignment can be performed on 

the order of minutes to hours using k-mer methods, hours to days using sequence similarity searches, 

and years (!) using phylogenetic methods. 

Despite these shortcomings, phylogenetic techniques can be a useful part of a tiered approach to 

taxonomic assignment. For example, one could use BLAST to assign taxonomy to the majority of reads, 

then phylogenetic approaches could be used to attempt to assign taxonomy to the subset of reads for 

which BLAST returned ambiguous results to see if these ambiguities can be resolved with a more 

sophisticated model. 
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2.7.5 Recommendations when accuracy is paramount 

If a well-curated and complete reference database is used, any of the above methods will arrive at the 

correct result. However, this ideal situation is rarely possible, so if accuracy is important then the 

following approach can help ensure the minimization of misclassifications: 

• Use the most accurate algorithm possible that can run within an acceptable timeframe (see 

Table 7). 

• Experiments should be run with multiple markers, perhaps from different genetic compartments 

(e.g., COI from the mitochondrial genome and 18S rRNA from the nuclear genome), and only 

accept taxonomic assignments where there is agreement between two or more markers. 

• If a species-level match is not possible for a particular read, re-analyse the data using different 

algorithms as independent validation for deeper taxonomic assignments (i.e., family or order-

level taxonomy) 

3 Reference databases 

3.1 Overview 

In a metabarcoding study it is usually desirable to match DNA sequences to the individual species they 

originated from (although so-called “taxonomy free” methods of ecosystem assessment are also valuable 

(Section 4.2.2.2.2). Thanks to large global initiatives like the International Barcode of Life project 

(Adamowicz, 2015), standard DNA barcode markers exist for tens of thousands of species and the 

reference database is growing at a rate of approximately 50% annually (Porter & Hajibabaei, 2018). 

Choosing an appropriate reference library can have a dramatic impact on the proportion of sequence 

reads for which taxonomy can be assigned, and the quality of those assignments (Figure 4). In this 

section, the pros and cons of different reference databases will be discussed. 

Improvements in taxonomic resolution using eDNA requires robust reference DNA databases (Baker et 

al., 2018; Everett et al., 2018; Hebert et al., 2003a). Reference DNA databases, such as BOLD and 

GenBank, match curated and verified species to their genotypic sequences (Cowart et al., 2015; 

Thomsen et al. 2016) and the databases grow as more studies are conducted to contribute verified 

species. Although databases entries are currently lacking for many species, reference libraries in general 

are growing (Ratnasingham et al., 2007; Vitecek et al., 2017) and will improve over time. However, many 

taxonomic groups have little to no representation within reference libraries, and as such taxonomic 

assignment from a metabarcoding dataset is currently limited.  

Limitations such as insufficient DNA reference libraries could potentially be avoided by skipping the 

species identification step and assigning ecological values to molecular operational taxonomic units 

(MOTUs), correlating between species/OTUs occurrence and environmental factors (Apothéloz-Perret-

Gentil et al., 2017). This type of taxonomy-free molecular index was tested using a diatom index and 

showed higher correlation between morphological and molecular indices without taxonomic assignment 

(Apothéloz-Perret-Gentil et al., 2017). An additional benefit of this approach is that it used 95% of the 

OTUs in the eDNA sample, as opposed to 35% with the taxonomic assignment approach. 
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Figure 4: Curated reference databases (top) provide the greater accuracy than uncurated databases (bottom), but at the expense 
of the number of taxonomic assignments made within the dataset.  

3.2 Choosing an appropriate reference database 

The most comprehensive public reference dataset available are the records within the 

GenBank/EMBL/DDBJ consortium. However, the data are user-submitted with minimal quality checking, 

so errors are present. Most of these arise from the submitter having an incorrect species identification. 

Moreover, the original specimen from which the DNA sequence was derived may not be available for 

examination, so it may be impossible to independently verify the identification. 

In general, there is a trade-off between the size of the reference database and the quality of information 

within it (Figure 4). Curated databases will return a smaller number of hits but with greater certainty that 

the correct species assignment has been made. Uncurated databases, on the other hand, will provide 

species-level matches for a greater proportion of sequences, but with less trustworthy results. Ultimately 

this will affect the balance between false positives and false negatives in the analysis. Curated databases 

will have more false negatives but fewer false positives, while more comprehensive uncurated databases 

will have fewer false negatives but more false positives. 

An additional consideration is that, depending on the methodology used for taxonomic assignment (see 

Section 2.7), larger reference databases can greatly increase the length of computational time required. 

An important risk to recognize when employing customized databases is that you will only match what 

you expect to see. For example, if you limit your reference database to a certain reference marker then 

you could miss important laboratory problems such as primers that are amplifying off-target genes. If 

you use a reference database that is limited by geography, then you will fail to detect species that are 

unexpected, such at those introduced through laboratory or field contamination, species that have been 

recently introduced (through shipping activities, for example), or migration of species into new 

territories because of changing global climate trends. This can obviously lead to false negatives, but false 

positives are also possible if two closely related species are present in an environment but only one is 

represented in the reference database. 

Here, we recommend that for general biodiversity studies where gathering the broadest amount of 

species data possible is the goal, it is best to use the largest reference databases available (e.g., 

GenBank). In contrast, in applications where accuracy is paramount (e.g., tracking invasive species, 

rare/endangered species) it is important to use a highly curated database that can stand up to 

independent verification and the scrutiny of a legal challenge. 

Curated

•Fewer results

•Higher quality

Uncurated

•More results

•Lower quality
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3.3 Uncurated databases 

The largest publicly available collection of reference sequences for metabarcoding is contained within 

the GenBank/EMBL/DDBJ consortium (Benson et al., 2018). It is important to recognize that even though 

this is the largest database available, it still represents only a small fraction of known species (see Section 

3.6). 

GenBank records are user-submitted with very little quality checking and therefore errors exist. 

Unfortunately, based on the personal experience of CEGA staff and their connections within the 

bioinformatics community, it is often difficult to get GenBank staff to correct errors when they are 

detected. GenBank is understaffed so queries will frequently go unanswered. Moreover, their process 

involves contacting the original submitter of the record to ask them to correct or withdraw the record, 

and those individuals may themselves be unresponsive. Tools like BLAST (Altschul, 2014) allow you to 

mask certain records from being returned in search results, so it is a common practice to keep a local list 

of GenBank accession numbers that are deemed to contain errors and use this list to filter the results 

returned from BLAST searches. 

Given the low amount of oversight, it is perhaps surprising that the error rate of GenBank has been 

determined to be fairly low, probably <1% at the genus level (Leray et al., 2019). However, while this may 

be deemed to be an acceptable error rate for a baseline biodiversity survey, for certain applications 

where accuracy is paramount (e.g., the detection of endangered species), this error rate may not be 

acceptable. 

There are some ways to ameliorate errors within GenBank and these are described at greater length 

within the section of this document that focuses on taxonomic assignments (Section 2.7). 

3.4 Curated databases 

There are many curated DNA barcode reference databases—indeed, too many to provide an exhaustive 

list here, although we present an example subset in Table 8. Databases are usually focused on specific 

markers, groups of organisms, geographic region, or a combination of these factors. Unfortunately, many 

of these reference databases were developed by academic groups for a one-off project and may not be 

actively maintained. Due to the rapidly growing set of public DNA barcode records, these curated 

databases can become quickly out of date. It is highly recommended that the date of the last update of a 

curated reference library is taken into account before deciding to use it. 

Table 8: Examples of curated DNA barcode reference databases 

Name Genetic marker Taxonomic group Geographic 
region 

Reference 

RefSeq All All All (Pruitt et al., 
2007) 

Midori2 All All All (Leray et al., 
2022) 

COInr COI All All (Meglécz, 2022) 
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Meta-fish-lib Multiple Fish UK (Collins et al., 
2021) 

Silva 16S/18S rRNA All All (Quast et al., 
2013) 

RDP 16S/18S rRNA All All (Cole et al., 2009) 

BOLD2 Primarily COI All All (Ratnasingham & 
Hebert, 2007) 

Coins COI Insects All (Magoga et al., 
2022) 

FishCard 12S Fish California (Gold et al., 2020) 

PLANiTS ITS Plants All (Banchi, 
Ametrano, et al., 
2020) 

GTDB N/A (whole 
genome) 

Prokaryotes All (Parks et al., 
2022) 

3.5 Creating a custom database 

As noted above, many custom databases were assembled for a specific project and are not continually 

updated. Therefore, if a curated database is desired then it is often preferable to build one de novo. 

There are many tools to assist with this process, many of which also contain functions to assist in 

identifying and removing bad records. 

There are several caveats to be aware of when downloading a subset of data from public databases such 

as GenBank. The first is that gene annotations are not standardized, and therefore a naïve search query 

will miss many records. For example, the most common DNA barcode marker for animals is the 5’ end of 

the mitochondrial cytochrome oxidase subunit I gene. However, this is variously annotated as “COI”, 

“CO1”, and “COX1” within GenBank, as well as various forms of its full-length name. For this reason, 

many reference databases like Midori2 are build based on sequence similarity searches rather than 

searching record metadata (Leray et al., 2022). Another important caveat is that the GenBank taxonomy 

database differs from other authoritative taxonomic sources such as the Global Biodiversity Information 

Facility (Telenius, 2011). In a recent study, 26,900 Arthropod entries had a discrepancy in family-level 

assignment between GBIF and GenBank (Veldsman et al., 2022). Therefore, taxonomy-based searches in 

GenBank may not always produce the expected results. Some reference database curation tools are 

aware of these taxonomic synonyms (see below). 

If the QIIME2 pipeline is being used, a detailed step-by-step workflow for creating a QIIME2-formatted 

reference database is available (Dubois et al., 2022). There are several software packages that can 

facilitate the creation of a custom database for use with a variety of taxonomic annotation tools (Table 

9). Because this is an area of rapid development, this list is likely to change rapidly in the coming years 

but it serves as a guide for what features these packages will typically provide. Each of these software 

 

2 BOLD also contains unverified records but they are annotated as such 
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packages has its pros and cons, but we will highlight some features of a few of them. BCdatabaser is 

perhaps the easiest to use because it has a user-friendly web interface 

(https://bcdatabaser.molecular.eco/), although it’s important to note that reference databases created 

through this portal are publicly visible to others, so if a private database is desired then the command 

line tool must be used. For studies narrowly focused on fish, Meta-fish-lib (Collins et al., 2021) is 

specifically tailored to the creation of reference databases for this group, and it is aware of taxonomic 

synonyms. The refdb package (Keck & Altermatt, 2023) is convenient for users that are comfortable 

working in an R environment, as it provides many graphical tools for the interactive exploration and 

curation of the reference database. Perhaps the most sophisticated of these tools is CRABS (G.-J. Jeunen 

et al., 2023), which includes a variety of tools for downloading records from different sources, 

performing in silico PCR, filtering/cleaning the data, visualizing and exploring the data, and exporting the 

records to a variety of useful formats. 

Table 9: Comparison of several reference database creation tools 

Software tool Specific to 
marker? 

Specific to 
taxonomic 
group? 

Includes curation 
tools? 

Reference 

BCdatabaser No No Yes (Keller et al., 2020) 

CRABS No No Yes (G.-J. Jeunen et al., 
2023) 

Meta-fish-lib Yes – but many Yes – fish Yes (Collins et al., 2021) 

mkCOInr Yes – COI No No (Meglécz, 2022) 

Refdb No No Yes (Keck & Altermatt, 
2023) 

RESCRIPt No No Yes (Robeson et al., 
2021) 

3.6 Reference library completeness 

There may be more than a billion species on Earth, of which 1.5 million have been named (Larsen et al., 

2017). In comparison, the Barcode of Life Data System (Ratnasingham & Hebert, 2007), the largest 

dedicated collection of reference DNA barcodes, represents only 350,000 species as of mid-2023. 

Fortunately, the DNA barcode reference library grows at a pace of ~50% annually so the ability to give 

species-level identifications to environmental DNA sequences is improving every day (Porter and 

Hajibabaei 2018). Indeed, in an internal study performed by CEGA, when marine eDNA data were re-

analyzed 18 months after an initial analysis, it was possible to increase the number of species-level 

assignments by 30%. This finding raises two important recommendations: 

1. Unlike conventional methods of biodiversity assessment, eDNA data is not static. Indeed, data 

can and should be periodically re-analyzed to take advantage of the continuously growing 

reference libraries. 

2. When performing comparisons between datasets—especially from one year to the next—it is 

necessary that all data be re-analyzed using a recent reference database to ensure that the 

https://bcdatabaser.molecular.eco/
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comparisons are truly apples-to-apples. Otherwise, strange artifacts are possible. For example, 

the number of species present in an environment may appear to increase over time simply 

because the number of species-level matches that can be assigned has improved as time 

progresses. 

In the following sections, we examine the reference library completeness for several sites around the 

world of high O&G activity. We have focused on the marine environment because the reference libraries 

for terrestrial and freshwater environments have fewer gaps. 

Shapefiles for each marine region were downloaded from marineregions.org, then simplified using an 

area-weighted Visvalingam-Whyatt algorithm in mapshaper.org. These coordinates where then uploaded 

to the GBIF website and used to download species occurrence data as of July, 2023 (Telenius, 2011). 

Finally, species records were cross-referenced with the GenBank nucleotide database (downloaded May, 

2023) as a rough estimate of reference library completeness. These were further cross-referenced to the 

IUCN status to identify species that are deemed “near threatened”, “vulnerable”, “endangered”, and 

“critically endangered”. It should be noted that even though it’s the most comprehensive resource 

available, the data in GBIF is not exhaustive and has its own biases. For example, according to GBIF the 

number of species known to occur in the North Sea is greater than the number of species in the South 

China Sea—which is almost certainly false but is an artifact of the relative intensity of biodiversity 

research that occurs in these various regions. 
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3.6.1 North Sea 

GBIF lists 36.0K known species within the North Sea3, as defined by a shapefile obtained from 

marineregions.org (Figure 5). Of these, approximately 77% are present in the GenBank nucleotide 

database (Figure 6). 

 

Figure 5: Map of the area of the North Sea used to query species occurrences. 

 

3 GBIF.org (23 July 2023) GBIF Occurrence download https://doi.org/10.15468/dl.nmc44e 

https://doi.org/10.15468/dl.nmc44e
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Figure 6: Approximately 77% of known species across the top ten phyla in the North Sea are present in GenBank (top figure). For 
species at risk, the reference library is 96.5% complete (bottom figure). 
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3.6.2 Gulf of Mexico 

GBIF lists 27.8K known species within the Gulf of Mexico4, as defined by a shapefile obtained from 

marineregions.org (Figure 7). Of these, approximately 65% are present in the GenBank nucleotide 

database (Figure 8). 

 

Figure 7: Map of the area of the Gulf of Mexico used to query species occurrences. 

 

4 GBIF.org (23 July 2023) GBIF Occurrence Download https://doi.org/10.15468/dl.3eyy5a 

 

https://doi.org/10.15468/dl.3eyy5a
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Figure 8: Approximately 65% of known species across the top ten phyla in the Gulf of Mexico are present in GenBank (top figure). 
For species at risk, the reference library is 90% complete (bottom figure). 
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3.6.3 Arabian Sea 

GBIF lists 9.9K known species within the Arabian Sea5, as defined by a shapefile obtained from 

marineregions.org (Figure 9). Of these, approximately 73% are present in the GenBank nucleotide 

database (Figure 10). 

 

 

 

Figure 9: Map of the area of the Arabian Sea used to query species occurrences. 

 

5 GBIF.org (23 July 2023) GBIF Occurrence Download https://doi.org/10.15468/dl.3qden7 

https://doi.org/10.15468/dl.3qden7
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Figure 10: Approximately 73% of known species across the top ten phyla in the Arabian Sea are present in GenBank (top figure). 
For species at risk, the reference library is 81.2% complete (bottom figure). 
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3.6.4 South China Sea 

GBIF lists 27.1K known species within the South China Sea6, as defined by a shapefile obtained from 

marineregions.org (Figure 11). Of these, approximately 72% are present in the GenBank nucleotide 

database (Figure 12). 

 

 

Figure 11: Map of the area of the South China Sea used to query species occurrences. 

 

6 GBIF.org (23 July 2023) GBIF Occurrence Download https://doi.org/10.15468/dl.rhtpc5 

https://doi.org/10.15468/dl.rhtpc5
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Figure 12: Approximately 72% of known species across the top ten phyla in the South China Sea are present in GenBank (top 
figure). For species at risk, the reference library is 81.1% complete (bottom figure). 
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4 Data analysis and interpretation 

4.1 Interpretation 

4.1.1 False Positive and False Negative Detections 

An important aspect to interpreting metabarcoding data, as with any other biodiversity dataset, is 

understanding the sources and frequencies of false positives and negatives to mitigate their occurrences 

and use the data appropriately. Several practices must be applied rigorously in field sampling and 

laboratory processing to reduce the likelihood of either false positives or negatives, but here we focus on 

steps that should be taken during bioinformatics processing, data analysis, and interpretation. Despite 

the application of rigorous protocols that reduce the likelihood of false positives and false negatives, 

they cannot be eliminated entirely thus, the analysis and interpretation of metabarcoding data should 

account for this possibility. 

4.1.1.1 Sample-level False Positives 

We define false positives as detections of taxa or sequence variants in samples where that taxon’s DNA 

or that sequence variant were not present at the point and/or time of collection (Darling et al., 2021; 

Drake et al., 2022). A different type of false positive can arise when a taxon’s DNA is present at the point 

and/or time of collection, but the taxon is not present at that point or time (Darling et al., 2021; Jerde, 

2021). This type of false positive results from environmental rather methodological factors and is 

discussed in the section Site-level Errors Arising from Environmental Conditions below. This section 

focuses on where and how false positives arise during the metabarcoding workflow and how to account 

these, where possible. False positives can arise during field sampling through external contamination 

such as improper decontamination of sampling equipment (Burian et al., 2021). False positives can also 

occur in the lab and bioinformatics workflows through external contamination (e.g., DNA in reagents), 

cross-contamination between samples, index hopping or tag jumping, artefacts (i.e., PCR or sequencing 

errors), chimeras, and incorrect taxonomic identifications (e.g., due to database errors, pseudogenes) 

(Bell et al., 2019; Burian et al., 2021; Drake et al., 2022; Ficetola et al., 2015; Graham et al., 2021; 

Santoferrara, 2019).  

Many sources of false positives can be controlled or reduced through the bioinformatics process. Below, 

we note the bioinformatics decisions and steps that can be taken to reduce the incidence of false 

positives and refer users to any other sections of this document where these steps have been previously 

discussed. Any steps that have not been discussed in other sections of this report are described in more 

detail here.  

Several mitigation steps that can be applied during bioinformatics have been discussed in other sections: 

denoising to remove artefacts (Section 2.5), chimera removal (Section 2.6), and robust procedures for 

taxonomic assignment (Section 2.6). Mitigation measures that have not been covered in previous 

sections include: decontamination based on negative controls and minimum read thresholds (Alberdi et 

al., 2018; Drake et al., 2022). Decontamination approaches rely on rigorous field/lab protocols that 

include negative controls throughout the workflow (e.g., field, extraction, PCR negative controls). There 

are several approaches to use detections in negative controls to mitigate contamination in samples, 

including removal of all ASV/OTUs detected in negative controls from samples (Drake et al., 2022; 

Karstens et al., 2019), subtracting raw reads recovered from ASV/OTUs in negative controls from 

associated samples (Andruszkiewicz et al., 2017; Bell et al., 2019), using a relative abundance-based 
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subtraction approach (e.g., microDecon package (McKnight et al., n.d.)), prevalence-based approaches 

(e.g., decontam package (Davis et al., 2018)), frequency-based approach using DNA concentrations (e.g. 

decontam package (Davis et al., 2018)), and predicting contamination based on known 

environments/contaminants using source tracking (Karstens et al., 2019; Knights et al., 2011). There is 

not a broad consensus on the choice of decontamination approach to use, but rather the choice of 

appropriate decontamination approach depends on project goals and the contamination data observed 

for a given sample set (Karstens et al., 2019). Since the optimal approach is project-dependent, we 

recommend that whatever method is used for decontamination, it be tracked and reported as 

appropriate.  

Minimum read thresholds can be applied to remove artefacts, index hops, and cross-contamination. The 

rate of cross-contamination, index hopping, and artefacts depend on a laboratory practice and 

parameters (e.g., increasing sequencing depth increases the artefact abundance (Alberdi et al., 2018; 

Ficetola et al., 2016)) and thus have led to a range of approaches. Thresholds can be applied equally 

across all samples and/or sequence variants (e.g., no filter (Lacoursière-Roussel et al., 2018), singleton 

removal (Bylemans et al., 2019; Guardiola et al., 2016), or removal of low abundance variants in a 

sample with a threshold ranging from 3-1000 (Cowart et al., 2015; Drake et al., 2022; Wangensteen et 

al., 2018)). Alternatively, they can be applied on a proportional basis in different contexts. Reads below a 

certain proportion of the total reads across all OTU/ASVs and samples can be removed (Braukmann et 

al., 2019; Klymus et al., 2017). Reads in a sample below a certain proportion of the total reads in the 

sample can be removed (Lopes et al., 2017; McInnes et al., 2017; Yamamoto et al., 2017). Reads in a 

sample with an abundance less than a proportion of the total OTU/ASV read count across all samples can 

be removed (Lopes et al., 2017; Pont et al., 2018; Wangensteen et al., 2018). Additional measures 

include removal of OTUs/ASVs that don’t have reads across multiple technical replicates (i.e., PCR 

replicates (Laroche et al., 2017; Lim et al., 2016)) or markers (González et al., 2023). This is not an 

exhaustive list of approaches to apply minimum read thresholds and there is not a broad consensus on 

the choice of minimum read approach and threshold to use, but rather the choice of appropriate 

thresholds should be optimized depending on project goals, reads recovered in positive and negative 

controls, and unassigned indexes/tags for a given sample set/sequencing run (Alberdi et al., 2018; Drake 

et al., 2022; González et al., 2023; Karstens et al., 2019). Since the optimal approach is project-

dependent, we recommend that whatever method is used for decontamination, it be tracked and 

reported as appropriate.  

4.1.1.2 Sample-level False Negatives 

False negatives can arise in several different ways and can thus be defined in several ways. We define 

two types of false negatives that are relevant to the bioinformatics processing. First, a sequence variant 

was present in a sample, but the sequence variant was not present in the data output after 

bioinformatics processing (Doi et al., 2019; Ficetola et al., 2015; McClenaghan, Compson, et al., 2020; 

Zinger et al., 2019). Second, a taxon’s DNA was present in the sample, but the taxon was not identified 

from the sequence data (Schenekar et al., 2020). A third type of a false negative can arise at the sample 

level when a sequence variant was present in the environment at the time and location of sampling but 

was not captured in a sample (Burian et al., 2021; Doi et al., 2019; Ficetola et al., 2015; McClenaghan, 

Compson, et al., 2020). Mitigation measures to minimize this type of false negative must be applied 

during sampling design and sample collection and won’t be discussed here. This type of false negative is 

however relevant to the discussion in the section Interpreting Sample-level Errors. Finally, false negatives 



 

Page 55 of 113 

 

can also occur at the site-level from environmental conditions, rather than due to the genomics 

workflow. These are discussed in the section Site-level Errors Arising from Environmental Conditions 

below. 

The two false negatives defined above that are relevant to bioinformatics may occur due to sample 

degradation, low sensitivity of PCR assay or PCR assay bias, DNA extraction stochasticity, PCR 

stochasticity, PCR inhibition, low sequencing depth, bioinformatic filtering is too stringent (e.g., minimum 

sequence copy number threshold), true sequence variants lumped into clusters, a lack of reference 

sequences, or a lack of resolution between sister taxa (Alberdi et al., 2018, 2019; Burian et al., 2021; 

Santoferrara, 2019; Schenekar et al., 2020).  

Most of these sources of false negatives need to be mitigated during the sampling design, sample 

collection and/or lab processing phases. There are two sources of false negatives that can be mitigated 

during bioinformatics: the stringency of bioinformatic filtering and the lumping of true sequence variants 

during denoising or OTU clustering. Parameter selection and optimization for denoising and clustering 

are covered in Section 2.5. The stringency of bioinformatic filtering refers back to the methods for 

decontamination and minimum read thresholds used to reduce false positives. Strict abundance-filtering 

methods can introduce false negatives and it has even been shown that these steps can introduce false 

negatives at higher rates than they eliminate false positives therefore they must be applied carefully 

(Littleford-Colquhoun et al., 2022). Enforcing multiple marker or multiple replicate detection thresholds 

also increase false negative rate considerably (N. T. Evans et al., 2017). Application of bioinformatics 

filters must consider project-specific objectives and, as noted previously, we recommend that whatever 

bioinformatic filtering approaches are used, they be tracked and reported as appropriate. See the 

section Balancing False Positive & False Negatives below for a discussion of how favouring fewer false 

positives or fewer false negatives may affect the resulting data. 

4.1.1.3 Balancing False Positive & False Negatives  

Every mitigation measure applied during bioinformatics needs to be applied while considering the 

balance between false positive and false negative detection. A strict threshold/method will remove false 

positives but introduce false negative, while a less stringent threshold will reduce false negatives but 

retain false positives (Alberdi et al., 2018; Drake et al., 2022; Littleford-Colquhoun et al., 2022). In other 

words, a higher stringency will provide high certainty but less sensitivity. Often, minimizing false 

positives is prioritized over false negatives, because the absence of DNA does not prove the absence of a 

taxon, while the presence of DNA is usually interpreted as proving the (potentially erroneous) presence 

of a taxon. However, the tolerance for false positives and false negatives will vary depending on project 

objectives and therefore, the choice of bioinformatics parameters and thresholds will be selected on a 

project specific basis. For example, a project looking for an invasive or endangered species may opt to 

use less stringent threshold(s) to obtain a lower false negative rate and tolerate a higher risk of false 

positives. False positive rates are proportionately higher for rare taxa (base rate fallacy (Darling et al., 

2021)) therefore a tolerance for false positives is important when looking for a rare target. Detections 

could be followed up with further surveys for confirmation. A project looking at ecosystem-level impacts 

may opt for more stringent measures to reduce false positives at the risk of a higher false negative rate. 

This approach will likely not impact community-level trends observed with metabarcoding data and thus 

allow inference about ecosystem level impacts (Wilding et al. 2023; Porter et al. 2019). Whatever 
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bioinformatic filtering methods are applied, practitioners should be able to justify their choice of 

parameters and thresholds in the context of that project or program’s objectives.  

4.1.1.4 Interpreting Sample-level Errors 

While sample-level errors may persist in a dataset despite employing the best available methods to 

minimize them, thoughtful interpretation can mitigate the impacts these errors have on conclusions 

made from the data. Several of these approaches are also used with other sampling methods to account 

for errors that arise from those approaches.  

It is important to maintain consistent protocols within a monitoring program or project, so that any 

biases/errors that are not accounted for are consistent across the study and do not create confounding 

factors for sample comparisons. For example, if samples are collected over several years and each year 

of samples is analyzed as they are collected, taxonomy would be assigned based on different reference 

sequence data available each year (Schenekar et al., 2020; Taberlet et al., 2018b). To enable more robust 

comparisons across years, previous years’ data should be re-assigned taxonomy using the latest 

reference database each year (see Section 3.6). All other parameters and filtering thresholds applied 

throughout the bioinformatics workflow should also be consistent. 

The molecular assay used may be a source of false negatives due to primer bias and/or inefficient 

amplification. This can be mitigated by careful choice of primers and the use of multiple assays during 

the sampling design phase, but incorporating an understanding of the limitations and biases of whatever 

assays are used into the interpretation of results will generate more robust conclusions (McClenaghan, 

Fahner, et al., 2020). If known biases for a given assay are not mitigated through the use of multiple 

complementary assays during the sampling design phase, these biases should be acknowledged during 

interpretation.  

Analytical tools designed to account for false positives and negatives and generate more robust 

estimates of species/taxon occupancy are available and used often for other biodiversity monitoring 

methods (Hamer et al., 2021; Mills et al., 2019) and, increasingly, for environmental genomics methods 

(McClenaghan et al. 2020; Bush et al. 2020; Pukk et al. 2021). A hierarchical occupancy modelling 

framework can be applied to account for false negatives at multiple scales (i.e., during sample collection 

and during PCR amplification) for single species and multi-species data (McClenaghan, Compson, et al., 

2020; Schmidt et al., 2013). Hierarchical frameworks for the inclusion of false positives are available for 

single-species models although they generally require some prior knowledge or complementary 

methods (Guillera-Arroita et al., 2017). Multi-species models accounting for false positives and false 

negatives are in development but are more difficult to apply when a priori information is required 

(Burian et al., 2021). Hierarchical occupancy models are especially useful when paired with 

environmental or methodological data that varied across samples and that is relevant to species 

distributions and/or probabilities of detection. This framework accounts for variability in the probability 

of detection (i.e., rate of false positives and negatives) across sites and samples when making 

conclusions about species distributions. When the appropriate data is available, we recommend using an 

analytical approach such as this to account for imperfect detection in metabarcoding data. These models 

are also discussed in the section Community Analyses.  
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Given the many definitions of false positive and false negative that exist and the contexts in which they 

can apply, we recommend that explicit definitions be provided when using these terms or use more 

specific terms to indicate how and where in the workflow these errors arise.  

4.1.1.5 Site-level Errors Arising from Environmental Conditions 

False positives or false negatives may occur at the level of sampling sites due to environmental 

conditions. In this context, a false positive is the presence of a taxon’s DNA at a sampling location and 

time, when the taxon was not present at that sampling location and time. A false negative is the absence 

of a taxon’s DNA at a sampling location and time when the taxon was present at that sampling location 

and time. These types of errors are the result of environmental and biological conditions, not the 

genomics methods used. Factors contributing to site-level errors include DNA persistence and 

degradation, organism physiology (i.e., eDNA production rate), hydrological conditions, and 

environmental conditions such as temperature or pH (Burian et al., 2021).  

An understanding of local hydrology may inform the interpretation of results and can be integrated into 

models of distribution/abundance when this data is available (Burian et al., 2021; Carraro et al., 2020; 

Fremier et al., 2019). This is likely more achievable for small lentic or lotic freshwater systems, but in 

large systems and marine environments the hydrology can be quite complex and/or hard to measure 

(e.g., deep ocean currents). For terrestrial environments, including both soil and air substrates, the 

movement of eDNA is not well understood (Taberlet et al., 2018c). Since information is lacking on eDNA 

transport in the environment, there are limited mitigation options beyond gathering more project-

specific data. Users should be aware of the possibility of eDNA movement impacting detection patterns 

and incorporate this into sampling design and interpretation where relevant. Similarly, knowledge of 

DNA production, persistence, and degradation rates for the organisms, environments, and substrates of 

interest can inform the interpretation of eDNA results. This is an active area of research (Barnes et al., 

2014a; Barnes & Turner, 2016; Collins et al., 2018; Dejean et al., 2011; Foucher et al., 2020; Nielsen et al., 

2007; S. A. Wood et al., 2020), however with the wide range of organisms captured in eDNA surveys and 

the variety of environmental mediums and conditions spanned by eDNA studies, there is still limited 

information available. When information is available for a study organism or environment, it should be 

included in the sampling design and interpretation of eDNA results, but where information is lacking on 

eDNA production, persistence, and degradation, users should be aware of the possibility of these factors 

impacting detection patterns and interacting with eDNA movement.  

There is also a possibility of sampling-independent contamination (e.g., ballast water, predator feces, 

human activities) which can lead to false positive errors (Burian et al., 2021; N. T. Evans et al., 2017). 

These sources of false positive are harder to mitigate so users should remain aware of the possibility and 

probability of such events occurring in the study area. Careful sampling design with repeated sampling 

time points paired with bioinformatics filtering thresholds requiring detections across multiple replicates 

may mitigate the risks of this type of false positive but would need to be assessed on a project-specific 

basis.  

4.1.2 Noise 

Metabarcoding data, like all biodiversity datasets, includes noise. Some of this noise arises from false 

positives, but much of it arises from stochasticity between replicates throughout the workflow (e.g., 

biological replicates during sampling, subsampling of DNA extracts for PCR replicates) (Wilding et al., 
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2023). Pseudogenes can be an additional source of noise, where many sequence variants can arise from 

a single individual. These may all be correctly identified and not represent false positives but artificially 

inflate the read counts and number of unique sequences from certain individuals, thus adding noise to 

the data (Graham et al., 2021). There exist methods that can attempt to identify and remove 

pseudogenes using machine learning, although this must be trained in a marker-specific manner and can 

only identify pseudogenes that have accumulated enough mutations to look distinct from real genes 

(Porter & Hajibabaei, 2021). Having too much noise in a dataset can mask true biodiversity patterns 

either at the level of individual taxa or the whole-community (Graham et al., 2021; Wilding et al., 2023).  

Robust sampling design, sample collection, and lab processing methods will all reduce noise in 

metabarcoding data. Mitigation measures to reduce noise that can be applied during bioinformatics and 

analysis have already been discussed in the section Sample-level False Positives above. In order to 

maximize the signal-to-noise ratio, particularly for whole community assessments along impact 

gradients, quite stringent thresholds to remove low frequency or low abundance ASVs may be applied 

(Wilding et al., 2023). Noise is non-random and can be accounted in modeling approaches (Gold, 

Shelton, et al., 2023). Occupancy modeling provides a means to account for some of the stochasticity 

inherent in genomics workflows however modeling approaches specifically designed to account for noise 

remain a frontier for development. 

4.1.3 Quantitative vs Presence/Absence 

The use of eDNA data for compositional or quantitative analyses is debated (Deagle et al., 2013; Di Muri 

et al., 2020; Goldberg et al., 2016; Piñol et al., 2018; Shelton et al., 2022). eDNA data generates counts 

of unique DNA sequences (or taxa) in a given sample, which could potentially be used in quantitative 

analyses. However, there are biases that can be introduced into these count data through the laboratory 

process (especially differential binding of PCR primers to environmental DNA from different taxa), such 

that the read counts in the sequencing data do not accurately reflect the amount of DNA in the 

environmental sample (Shelton et al., 2022). Additionally, there are biological and environmental factors 

that can affect the amount of DNA from a taxon present in the environment, meaning the amount of 

DNA in a sample does not necessarily reflect the abundance or biomass of that organism in the 

environment (Goldberg et al., 2016). There are many factors that can influence each of these two 

processes. For example, the metabolic rate or age of an organism can influence how much DNA is 

released into the environment (Lacoursière-Roussel et al., 2016; Rourke et al., 2022; Takeuchi et al., 

2019). Temperature and microbial activity can affect how quickly DNA degrades, thus affecting the 

amount of DNA from an organism that persists in the environment (Barnes et al., 2014b; Joseph et al., 

2022; Rourke et al., 2022). In the lab, the efficiency of each primer set varies across taxonomic groups, 

therefore any general primer set will preferentially amplify certain taxonomic groups over others 

(Elbrecht & Leese, 2015; Piñol et al., 2018; Rourke et al., 2022). Despite the technical, biological, and 

environmental factors that impact read counts, many studies show strong correlations between 

sequence read counts in metabarcoding data (raw and transformed) and organism biomass in the 

environment (Di Muri et al., 2020; Ershova et al., 2021; N. T. Evans et al., 2016; W. Li et al., 2021; Skelton 

et al., 2022; Thomas et al., 2016; Tsuji et al., 2022) and read counts are often used for ecological analyses 

(Keeley et al., 2018; Marquardt et al., 2016; Mauffrey et al., 2021; Numberger et al., 2019; Ratcliffe et al., 

2021). Relative abundances can also be derived from metabarcoding data through presence/absence 

across high-replicate samples using occupancy modeling (Bush et al., 2023). This procedure assumes that 
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the likelihood of detecting a species in a given sample is directly proportional to its abundance. For 

example, a species that is detected in 40 out of 50 samples is believed to have a higher relative 

abundance than a species that was only detected in 10 out of 50 samples. 

If sequence read counts will be used for quantitative analyses, a robust laboratory workflow designed to 

reduce and/or account for biases should be used where possible (Luo et al., 2023). Depending on the 

study goals, different analytical approaches may be used to account for biases. For example, applications 

comparing within-species abundance across samples may take a different analytical approach that those 

comparing within-sample across species abundance (Luo et al., 2023; Shelton et al., 2022). Analyzing and 

interpreting quantitative results will depend on the workflow employed in the laboratory and the 

application of the data. We provide some examples below; however, this is a rapidly evolving area of 

research and methods will be subject to change as new approaches emerge.  

To reduce primer bias during amplification and generate more accurate sequence read counts, primer 

sets that perform better for this purpose can be selected. Universal primer sets that show less biased 

results—and therefore more accurate quantitative results—should be used (Piñol et al., 2018). Primer 

sets can be also designed to generate less biased results for quantitative applications (e.g., the LERAY-XT 

degenerate COI primer set (Ershova et al., 2021)). The choice of target gene region can also improve 

quantitative results. For example, the photosynthetic gene psbO in phytoplankton is exclusively present 

in photosynthetic organisms and exists primarily in one copy per genome, reducing the bias that can be 

introduced when gene copy number varies between organisms (Pierella Karlusich et al., 2023). Marker 

selection for quantification must be done at the design phase. After laboratory analysis there are several 

analytical approaches that can be applied to account for primer bias and enable within sample across 

species comparisons. The most common approach is the application of correction factors. These 

correction factors may be derived from the results of mock community analysis (Krehenwinkel et al., 

2017; Matesanz et al., 2019; Thomas et al., 2016), from allometric scaling (Yates et al., 2022), or from the 

number of gene copy numbers across species (J. L. Martin et al., 2022). The use of these correction 

factors improve the correlation between sequence read counts and the original DNA abundance in a 

sample (Krehenwinkel et al., 2017) or the abundance of the organism in the environment (Yates et al., 

2022). Alternatively, emerging model-based approaches directly model amplification efficiency across 

taxa to correct data and generate accurate estimates of community composition (Shelton et al., 2022). 

The previously described methods aim to reduce biases across taxa within a sample. To enable robust 

comparisons within a taxon across samples, the noise that is generated between samples must be 

accounted for. The use of internal standards or spike-ins is the most common approach to account and 

correct for this type of noise (Luo et al., 2023; Smets et al., 2016; Tsuji et al., 2020). Other studies use 

qPCR or ddPCR based quantification of total eDNA in a sample to correct for variation in starting eDNA 

concentrations (Pont et al., 2023; Van Bleijswijk et al., 2020). qPCR and ddPCR can accurately quantify 

the amount of DNA in a sample enabling an estimate of the amount of eDNA for each organism in each 

sample when paired with compositional metabarcoding data (Zemb et al., 2020). However, as noted 

above, compositional data within a sample can be impacted by primer biases and the relationship 

between an organism’s abundance/biomass and the amount of eDNA in the environment is affected by 

several environmental and biological conditions. These approaches to reduce noise that is generated 

between samples must be incorporated during the laboratory analysis steps and also require analytical 

correction.  
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The detection/non-detection of a species across multiple samples can be used as an index to compare 

within species across sample sets abundance. There is generally a positive relationship between species 

occurrence and abundance (Gaston et al., 2000), meaning that with sufficient sampling to accurately 

estimate a species’ occurrence in a given area, the probability of occurrence could be used as a measure 

of relative abundance (i.e., areas with a higher probability of occupancy have a higher relative 

abundance than areas with a lower probability of occupancy) (MacKenzie & Nichols, 2004). This is 

sometimes referred to as a semi-quantitative measure of abundance. This method reduces, but does not 

remove, noise introduced during the metabarcoding workflow and is not recommended to compare 

across species (Luo et al., 2023; Sard et al., 2019; J. Yang et al., 2017). 

No matter what approach is used, reporting should be clear and specific about the approach that was 

implemented, what the potential sources of error are, and it should be made clear that eDNA data are 

the result of the abundance of an organism’s DNA in the environment. Without knowledge of species-

specific biology and environmental conditions, extrapolating these results to estimate absolute 

abundance or biomass of the organism will include additional sources of uncertainty. eDNA data 

generally performs better at estimating biomass than abundance (Elbrecht & Leese, 2015; Lamb et al., 

2019). Most traditional indices are based on abundance not biomass, therefore even where accurate 

quantitative estimates can be made, metabarcoding data may not be compatible with traditional indices. 

Some studies show consistent results across metabarcoding and morphological datasets for certain 

indices (e.g., AMBI (Aylagas et al., 2018)). Additionally, new indices are emerging that are designed for 

this type of data (Mächler et al., 2021). Further discussion of this can be found in the section Ecological 

Indices.  

4.1.4 Controlling for Sampling Effort 

It is well established that uneven sampling effort can bias biodiversity inferences across samples or sites. 

This is not unique to environmental genomics approaches and several resources are available that 

discuss this (R. Colwell & Coddington, 1994; Gotelli & Colwell, 2001; Moreno & Halffter, 2000) as well as 

methods to reduce or address these biases (Buddle et al., 2005; Oliveira et al., 2017; Pardo et al., 2013; 

Stolar & Nielsen, 2015). These resources focus on non-molecular methods; however, laboratory analysis 

of environmental genomics samples creates additional opportunities for uneven sampling effort to be 

introduced into the biodiversity characterization process. There are several approaches to mitigate this. 

This section describes the sources of biased sampling effort during laboratory processing and potential 

methods for controlling for uneven laboratory sampling effort that occurs with environmental genomics 

samples. The same approach may not apply across all projects and scenarios thus these are presented as 

options and users should be aware of how sampling effort applies to environmental genomics samples to 

evaluate various approaches that may be used. 

The most common source of variation in sampling effort during laboratory processing is sequencing 

depth, also referred to as depth of coverage per sample, or library size (McMurdie & Holmes, 2014). 

Sequencing libraries are generally prepared by combining samples in equimolar concentration however, 

due to random sampling during sequencing the resulting sequencing depths across samples can vary by 

orders of magnitude (McMurdie & Holmes, 2014). Samples may also be sequenced on multiple different 

sequencing runs further contributing to variation in sequencing depth between samples. Higher 

sequencing depths yield more unique sequences and more taxa (Singer et al., 2019), and thus impact 

alpha and beta diversity estimates (Shirazi et al., 2021). Rare or low abundance taxa are most influenced 
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by variation in sampling effort (Shirazi et al., 2021). Another factor contributing to laboratory sampling 

effort is variation in replication and pooling at different stages (e.g., DNA extraction, PCR). Replicates 

from a given step can be added and carried through the entire process and subsequently pooled back 

together. Typically, protocols are applied consistently across samples from a sample set, but in some 

cases if samples are processed at different times (e.g., time series sampling) methods may have evolved 

resulting in different sampling effort across samples. Wherever sampling effort differs between samples, 

this should be acknowledged and/or accounted for in analysis and interpretation.  

To address uneven sequencing depth, normalization of read counts based on sequencing depth can be 

done using a variety of scaling factors, the simplest of which divides each taxonomic unit’s read count by 

total sequencing depth for that DNA marker, can be used to generate relative frequency data (McMurdie 

& Holmes, 2014; Taberlet et al., 2018a). This simple approach can overcome biases as a result of 

sampling effort in some cases but is not appropriate for data being used to estimate or compare richness 

among samples and yields biased differential abundance estimates (Bullard et al., 2010; McMurdie & 

Holmes, 2014; Weiss et al., 2017). Despite these limitations, this approach is widely used (Muha et al., 

2021; Schenk et al., 2019; Skidmore et al., 2022). Other scaling factors used include cumulative sum 

scaling, trimmed mean of M component scaling, and, more recently, Analysis of Compositions of 

Microbiome with Bias Correction (ANCOM-BC), which performed the best in a comparison of common 

scaling factors (Lin & Peddada, 2020).  

Rarefaction curves provide another approach to control for uneven sampling effort. Rarefaction curves 

plot taxon recovery (e.g., # species, # OTUs) against sampling effort (e.g., sequencing depth, number of 

replicates) to visualize whether a sample has reached saturation; that is, almost all taxa that could be 

detected, even with increased sampling effort, were detected (Matthews et al., 2021; Shirazi et al., 

2021). If all samples have reached saturation, variation in sampling effort should not have a strong 

impact on diversity estimates (Taberlet et al., 2018a). If samples have not reached saturation, samples 

that did not reach saturation can be discarded or the sampling effort can be standardized by rarefying 

the data set (i.e., randomly subsampling to a given sampling effort) (Taberlet et al., 2018a). Both 

approaches result in a loss of information and reduced statistical power since data are being discarded. 

For example, when sequencing depth is standardized using rarefaction, the uncertainties in taxon 

relative abundances across samples increases which then results in less statistical power to detect 

differences between groups or samples (McMurdie & Holmes, 2014). When rarefying data, the sampling 

effort used as the subsample size should be selected to minimize the number of samples or amount of 

data excluded from the analysis and maximize the proportion of the sample diversity retained. It has 

been suggested that samples should be rarefied to an equal diversity coverage (e.g., 95%) per sample 

based on rarefaction curves, which would result in samples being rarefied to different levels sampling 

effort depending on site or sample specific characteristics (Taberlet et al., 2018a). However, determining 

the optimal rarefaction threshold for new empirical data may not always be possible (McMurdie & 

Holmes, 2014). Despite these limitations, this approach is widely used (Lejzerowicz et al., 2021; Mächler 

et al., 2021; Matthews et al., 2021). 

For differences in sampling effort at the level of replication, extrapolation can generate estimates of 

species richness that account for sampling effort (Taberlet et al., 2018a). For example, the Chao1 index 

estimates species richness at a site using the variation in diversity recovered between replicates (Chao & 

Chiu, 2016). These methods are sensitive to rare taxa and may be impacted by artefacts that arise in 
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metabarcoding data, therefore they may not perform well in accounting for variation in sequencing 

depth.  

There are several modelling approaches that can be used to make inferences about species distributions 

and community composition while accounting for variation in sampling effort across samples and sites. A 

hierarchical occupancy modeling framework can include sequencing depth as a covariate at the level of 

replicate samples and can accommodate varying levels of replication across multiple sampling levels 

(e.g., sites, samples, PCR replicates) (McClenaghan, Compson, et al., 2020; Willoughby et al., 2016). 

Other modeling frameworks at their current stage of development may be able to incorporate sampling 

effort under sampling design parameters (e.g., HMSC (Tikhonov et al., 2020)), but do not account for the 

possibility of imperfect detection that occupancy models include.  

Since many different approaches are available and the optimal approach depends on project specific 

goals, the method used to account for variation in sampling effort should be reported, with justification 

to support the analyses being conducted for a given project. 

4.2 Bioindicators & Biotic Indices 

Ecosystems are complex systems to monitor with a large number of interacting biotic and abiotic factors. 

Bioindicators were developed as a simplified approach to monitor environmental conditions, ecological 

processes, and/or biodiversity. Bioindicators are selected as representative or aggregated responses for 

the ecosystem (Holt & Miller, 2010). Sample and data collection efforts can then be focused on 

bioindicators identified for the type of stress or disturbance in the environment of interest (Holt & Miller, 

2010). Environmental genomics can be used to generate data on known bioindicators or be used to 

identify new bioindicator taxa since environmental genomics tools generate data on whole communities, 

including taxa difficult to capture or identify with traditional methods (He et al., 2020). Data on 

bioindicator taxa are often used to calculate biotic indices (Lanzén, Dahlgren, et al., 2021). Biotic indices 

integrate information from multiple taxa, most often bioindicator taxa, into a single value that provides a 

metric for ecosystem health or quality (Borja et al., 2000). Biotic indices are widely used and accepted by 

regulatory agencies for biomonitoring (Monaghan & Soares, 2012). Environmental genomics data can be 

used to calculate established biotic indices or used to develop new biotic indices (Lanzén, Dahlgren, et 

al., 2021). The use of environmental genomics data for bioindicator and biotic index analyses is quickly 

evolving with new research and efforts to ensure eDNA-based biodiversity data can integrate into 

monitoring frameworks. Environmental genomics data have unique features compared to typical 

morpho-taxonomic data, so there are considerations and limitations that users should be aware of when 

interpreting the resulting indices.  

4.2.1 Bioindicators 

Environmental genomics can be used to monitor previously established indicator species or groups 

(Capurso et al., 2023; Carew et al., 2013; Hajibabaei et al., 2011; He et al., 2020) and to classify 

ecosystem status based on these bioindicators (He et al., 2020; Kuntke et al., 2020; Miyata et al., 2022). 

Alternatively, environmental genomics data can be used to identify new bioindicator taxa if sampling is 

conducted along an appropriate gradient (Laroche et al., 2016; Pawlowski et al., 2016). Indicator 

analyses can also be used to evaluate community-level biodiversity patterns and identify the species 

driving differences in biological communities (G. Jeunen et al., 2019; Krah & March-Salas, 2022)(see 

more in Community Analyses section). Using environmental genomics data to identify bioindicators 
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broadens the scope of biomonitoring by including taxonomic groups that were not previously used due 

to difficulty in collection or identification (Pawlowski et al., 2018). When using environmental genomics 

data to identify new bioindicators, the bioindicators may be identified using taxonomic information (e.g., 

species names) or unique sequences (e.g., OTUs) which allow a larger portion of the metabarcoding data 

to be used (Pawlowski et al., 2016; Stoeck, Kochems, et al., 2018).  

Methods for the classification of ecosystems status and identification of indicator taxa based on 

environmental genomics data are generally consistent with the methods used for morpho-taxonomic 

data, however there are some important factors to consider when implementing these methods. If using 

unique sequences as bioindicators, users must consider that DNA sequences from the same individual 

could yield different OTUs/ASVs depending on the bioinformatics parameters used during analysis. In 

order to achieve comparable OTUs/ASVs, the same bioinformatics pipeline must be followed to enable 

cross-study or broad-scale use of unique sequences as indicators. Additionally, the use of multiple DNA 

markers can bias results at the unique sequence level if data from multiple markers are combined. Some 

individuals or taxa may be represented by both markers while other are not due to differences in primer 

binding. Individuals or taxa can be double counted giving them more weight in downstream analyses. 

Using taxonomic data when combining multiple markers avoids this issue, however most studies 

identifying new indicator taxa with metabarcoding data have used a single DNA marker (Kelly et al., 

2020; Laroche et al., 2016; Pawlowski et al., 2016; Stoeck, Kochems, et al., 2018) or analyzed markers 

separately (Lanzén, Dahlgren, et al., 2021). Both presence/absence data and quantitative data can be 

used to identify indicator species and assess ecological status (Alexander et al., 2020). The biases 

associated with using environmental genomics data quantitatively are discussed in the Quantitative 

Analyses section (4.1.3). However, quantitative data is often used to identify indicator taxa, with relative 

abundance across samples being used as a quantitative measure (He et al., 2020; Lanzén, Dahlgren, et 

al., 2021; Laroche et al., 2016; Pawlowski et al., 2016). 

4.2.2 Biotic Indices 

A biotic index is a value generated from the assessment of indicator organisms, which provide 

information on ecological status of the environment being surveyed by comparison with presence and 

abundance patterns in reference conditions (Pawlowski et al., 2018). Biotic indices range in complexity 

from simple univariate indices (e.g., AZTI’s Marine Biotic Index (AMBI) (Borja et al., 2000)) to complex, 

multimetric indices (e.g., Multimetric Index for Stream Acidity (MISA) (Birk et al., 2012)). The most 

commonly used indices, and those accepted by regulatory agencies, were developed based on morpho-

taxonomic data and include some ecological and/or functional information (e.g., sensitivity to 

disturbance). Metabarcoding data can be used to calculate these same indices and often metabarcoding 

generates more data than morpho-taxonomic methods, by increasing taxonomic resolution and 

detecting all life stages (Pawlowski et al., 2018). However, there are limitations to the use environmental 

genomics data within traditional morpho-taxonomic biotic indices, which has spurned the creation of 

indices based on molecular data (Keeley et al., 2018). Both the integration of metabarcoding data into 

traditional indices and the development of new molecular indices are active areas of research. We 

discuss the advantages and limitations of commonly used approaches and provide recommendations for 

reporting to account for the range of approaches available. 
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4.2.2.1 Integrating Environmental Genomics into Existing Indices 

There is general agreement in the results of pre-existing indices for ecological status assessment 

calculated using morpho-taxonomic data and metabarcoding data (e.g., the Norwegian Sensitivity Index 

(Lanzén, Dahlgren, et al., 2021); AMBI (Aylagas et al., 2018); Swiss Diatom Index (Visco et al., 2015); IBCH 

(Brantschen et al., 2021)). These indices integrate ecological information about the taxa detected with 

relative abundance data. As such, taxonomic assignment is a critical step in using metabarcoding data for 

biotic indices to link sequence data to ecological information. Typically, only a fraction of metabarcoding 

data gets used to calculate the indices, because a large portion of sequences are not assigned taxonomy 

or relevant ecological information is not available for the taxa identified (Mauffrey et al., 2021; 

Pawlowski et al., 2018). Furthermore, the taxa that are identified can be biased by reference database 

coverage, which may be more comprehensive for certain taxonomic groups compared to others (Aylagas 

et al., 2014; Hajibabaei et al., 2019). Appropriate DNA marker selection for the bioindicators groups 

associated with a given index is essential (Aylagas et al., 2014). Multiple DNA markers can be used to 

overcome some bias present in reference databases, however quantitative data from multiple markers 

should be analyzed separately (Lanzén, Dahlgren, et al., 2021; Mauffrey et al., 2021). Quantitative data 

(i.e., relative abundance across samples) is often used to calculate indices and has performed well for 

status assessment, despite known biases with quantitative data generated by metabarcoding (Aylagas et 

al., 2018; Mauffrey et al., 2021; Pawlowski et al., 2018; Sanchez et al., 2022). Some indices can also be 

calculated using presence/absence data to avoid these biases (Fernández et al., 2019), however it has 

been shown that quantitative data generates results more similar to morpho-taxonomic data for certain 

indices (Aylagas et al., 2018). There are many biological and technical factors that influence the 

calculation of indices using metabarcoding methods compared to morpho-taxonomic methods but given 

the agreement between these two approaches across multiple indices and the widespread use of these 

indices in regulation, we suggest that metabarcoding data can be used to calculate traditional indices 

where agreement between methods has been shown.  

4.2.2.2 Developing New Indices 

4.2.2.2.1 New Bioindicators 

New biotic indices are being developed based on metabarcoding data due to the increased taxonomic 

breadth and ease of identification achieved for certain taxonomic groups (Aylagas et al., 2017; Pawlowski 

et al., 2016, 2018). Where these indices rely on taxonomic information, the limitations of these new 

indices are the same as those discussed above. One additional consideration is that the same reference 

database should be used for index development and ecological assessment with that index (Lanzén, 

Dahlgren, et al., 2021; Visco et al., 2015). With large gaps that exist in reference databases and new 

records continuously being added, an updated reference database can have a large impact on the 

taxonomy assigned to metabarcoding data (Hestetun et al., 2020; Morard et al., 2019). Where these new 

indices being developed do not rely on taxonomic information, they are discussed below in the 

Taxonomy Free Indices section. 

4.2.2.2.2 Taxonomy Free Indices 

Several biotic indices have been developed using unique sequence units (i.e., OTUs/ASVs) to maximize 

the use of metabarcoding data and overcome gaps in reference databases (Apothéloz-Perret-Gentil et 

al., 2017; Cordier, 2020; Cordier et al., 2017; Keeley et al., 2018; Lanzén, Mendibil, et al., 2021; Porter & 

Hajibabaei, 2020). This approach requires training data with unique sequences across samples from 
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known ecological status, to assign ecological values to unique sequences (Pawlowski et al., 2018). This 

can be a drawback as new sequences are needed to develop metrics for new environments and indicator 

groups (Lanzén, Dahlgren, et al., 2021), however there is also the potential for the new indices to be 

compatible with traditional indices and current regulations by using the same assessment categories 

(Cordier, 2020). Both correlative (Apothéloz-Perret-Gentil et al., 2017) and machine learning approaches 

(Cordier et al., 2017) have been used to develop these new metrics. These new methods show strong 

agreement with traditional indices or outperform them, as long as the DNA markers used capture 

bioindicator groups (Cordier et al., 2017, 2019; Keeley et al., 2018; Lanzén, Mendibil, et al., 2021). The 

DNA marker(s) used to develop the index must be selected appropriately for the environment and 

stressor/disturbance of interest and the same marker(s) must be used for subsequent assessment based 

on the index. Taxonomy free index approaches are calibrated on the unique qualities of environmental 

genomics data (e.g., different units of presence represented by eDNA vs. morphologically identified 

species), and users need to follow the same bioinformatics workflow to generate comparable data on 

unique sequences units (Cordier, 2020).  

4.2.2.2.3 Community Structure 

Since metabarcoding can generate data on whole communities more efficiently than other methods, the 

cost and time for sample collection and identification do not limit the scope of taxa that can be included 

in an assessment like they do for morpho-taxonomic assessments (Pawlowski et al., 2018). As such, 

indices do not need to be reduced to a single value, but whole communities can be used to assess 

ecological status (Ruppert et al., 2019; Stoeck, Pan, et al., 2018). Such approaches are not commonly 

used in regulatory frameworks, but have potential to account for additional biotic factors, such as co-

occurrence (Cordier, 2020). Community analyses that can potentially be used to assess ecological status 

are discussed further in the Community Analyses section. 

4.2.2.3 Recommendations  

When reporting on bioindicator or biotic index analyses, it should be noted what data were used for 

indicator analyses (presence/absence vs. quantitative), what markers were used, and whether data from 

different markers were combined, the reference database used and date of use, and any data 

transformations or normalization used to ensure consistency in methods where relevant. This 

information is required to interpret sources of bias in the results and enable cross-study comparisons 

using indices. Any newly developed indices using environmental genomics data need to be validated and 

should only be used to assess ecosystem status in environments and for stressors for which they have 

been validated. 

4.2.3 Community Analyses 

Metabarcoding generates data on a wide range of taxa, often across several major taxonomic groups. As 

such, the goal is often to compare whole communities across spatial or temporal gradients or across 

conditions, rather than focusing on individual species or taxonomic groups. While bioindicator taxa and 

biotic indices can provide a streamlined approach to assess ecosystem status, they rely on a limited 

scope of taxa and are designed to provide information on a specific measure of quality or status 

(Pawlowski et al., 2018). If work is being conducted where relevant indicators/indices are available for 

the environment and stressor of interest and the scope is limited to the stressor of interest, using 

indicators and/or an index may provide the most efficient approach to monitoring. However, where the 
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ecological information for an index is lacking, where multiple stressors are involved, where multiple 

taxonomic/functional/habitats are of interest and/or where ecosystem structure and function are of 

interest, whole community analyses are required. Below we have listed the most common approaches to 

community analysis, with their respective advantages and limitations for use with metabarcoding data 

and its unique properties (i.e., compositional, sparse, over dispersed; (Leite & Kuramae, 2020)). The 

analyses listed below can be conducted using taxonomic information (e.g., at the species-level) or they 

can be conducted using unique sequences or sequence clusters (i.e., MOTUs) as the taxonomic unit 

(Taberlet et al., 2018a). Using sequences as taxonomic units generally allows a larger portion of the data 

to be used but they are different units of measure than traditional species observations and thus results 

must be interpreted accordingly (Cordier et al., 2021). For example, MOTUs created based on a given 

similarity threshold do not necessarily correspond to a single species, genus, or taxonomic group. They 

may correspond to multiple species or conversely, two MOTUs may correspond to a single species. The 

understanding that MOTUs do not directly correspond to traditional taxonomic levels is essential to 

interpreting results based on MOTUs (Taberlet et al., 2018a). When metabarcoding data is analyzed 

using taxonomic assignments, these data can be biased due gaps in reference database information, 

leading to a large proportion of data going unused (Cordier et al., 2021). Note that some of community 

metrics and analyses described below are being integrated into complex indices (as noted in the Biotic 

Indices section).  

4.2.3.1 Community Metrics 

Community biodiversity metrics are values that provide a measure of biodiversity within, between, and 

across sampling locations. These values are not directly linked to any ecological status or environmental 

conditions but can be used to compare community biodiversity across conditions or gradients (Cordier et 

al., 2021). Various metrics exist to measure different aspects of biodiversity at different scales, including 

alpha diversity which measures diversity within a location, beta diversity which measures differences in 

biodiversity between locations, and gamma diversity which measures diversity across locations. These 

metrics are frequently used with metabarcoding data (e.g., (Brantschen et al., 2021; Doi et al., 2021; 

Leduc et al., 2019; Y. Li et al., 2018; Mauffrey et al., 2021)). Below we summarize the most commonly 

used metrics and their limitations, as well as recommendations for their use with metabarcoding data.  

4.2.3.1.1 Alpha Diversity 

Alpha diversity metrics measure the richness (number of different taxonomic units) and evenness 

(relative abundance of each taxonomic unit) of a community at a local scale, with metrics ranging from 

those that simply count the number of taxonomic units (richness) to those with an increasing reliance on 

the proportional abundances of taxonomic units (Daly et al., 2018). The most frequently used alpha 

diversity indices include, in order of increasing reliance on abundance information: observed richness, 

Shannon index, Simpson index, and Pielou’s evenness (e.g., (Cordier et al., 2021; Foulon et al., 2016; 

Leduc et al., 2019; Zhou et al., 2022)). These can all be considered classical indices and are the most 

widely used largely because they are the oldest and simplest diversity indices available (Daly et al., 

2018).  

Richness is the simplest of these measures, requiring only a count of taxonomic units. Although this 

concept has been extended to include estimates of true richness, which include unseen species. For 

example, Chao1 (based on abundance) and Chao2 (based on incidence) are often used to estimate the 

number of undetected species and thus generate a estimate of true richness (Bukin et al., 2019; Gotelli 
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& Colwell, n.d.; C. Yang et al., 2014). Richness estimates are heavily impacted by rare species, making 

these metrics prone to bias when applied to metabarcoding data where sequencing and PCR errors can 

lead to spurious, low abundance, and low frequency sequences (Chiu & Chao, 2016). New methods are 

emerging that address this challenge and are introduced below. 

Classical diversity metrics (e.g., Shannon index, Simpson index) are often calculated based on 

metabarcoding data, but these metrics can be complicated by uncertainties in taxonomic units as 

discussed above in this section and quantification discussed in the Quantitative Analyses section. 

However, it is generally accepted that these metrics can be used to calculate the statistical significance of 

a change in diversity following a disturbance and are frequently used in this context with metabarcoding 

data (e.g., (Mauffrey et al., 2021; Pawlowski et al., 2014; Pochon et al., 2015)). 

Diversity metrics based on effective species numbers are a more recent approach to diversity 

measurement and they have the advantage of having more easily comparable and interpretable units 

(i.e., an effective number of species). The most commonly used framework for calculating effective 

species numbers is the Hill Numbers, which have the added advantage of being a parametric family of 

indices with a q  parameter (known as the order) than can be adjusted to weight the relative 

contribution of different taxonomic units by their relative abundances (Daly et al., 2018). A q = 0 is 

species richness, q = 1 is analogous to the Shannon index and q = 2 is analogous to the Simpson index 

(Mächler et al., 2021). The values can be compared to one another to evaluate the contributions of 

taxonomic units based on relative abundance. The Hill Number framework is increasingly being used to 

with metabarcoding data due to the relative ease of interpretation and comparison across these 

different orders (e.g., (Doi et al., 2021; Mächler et al., 2021; Suter et al., 2021)).  

The Hill Number framework is under active development and several extensions to this framework have 

been developed recently that provide additional functionality in interpreting metabarcoding data. Chiu 

and Chao 2016 developed a non-parametric estimator of the true singleton count to improve alpha 

diversity estimates from metabarcoding that have spurious singletons. Hill Numbers can also be 

calculated without rarefying data to control for sampling effort (e.g., sequencing depth) through 

coverage-based rarefaction and extrapolation (Chao & Jost, 2012; R. K. Colwell et al., 2012). This avoids 

the loss of useful data when rarefying to equal sampling effort. Furthermore, Hill Numbers can be 

calculated using phylogenetic or functional distances in the form of a species distance matrix (Alberdi et 

al., 2020; Taberlet et al., 2018a). Including phylogenetic information accounts for evolutionary 

relationships, reduces uncertainty regarding thresholds used to designate taxonomic units, and helps 

account for PCR/sequencing errors (Cordier et al., 2021; Tedersoo et al., 2022). 

Classical indices continue to be widely used however, these new tools are increasingly being 

implemented (Roswell et al., 2021) and we expect their use will continue to become more popular as 

they overcome some challenges associated with the unique properties of metabarcoding data and are 

under active development. Alpha diversity metrics are scale dependent (Chase et al., 2019) and should 

only be compared across samples collected at the same scale and using the same methodology.  

4.2.3.1.2 Beta Diversity 

Beta diversity measures the variation in identities of taxonomic units among samples or sites (Tuomisto, 

2010b). There are a wide range of beta diversity indices in use that use different data types 

(presence/absence/incidence data and/or abundance data) and focus on different aspects of beta 
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diversity (directional turnover or non-directional variation) (Andersen et al., 2011). Several articles have 

thoroughly reviewed the range of indices available (Andersen et al., 2011; Barwell et al., 2015; Koleff et 

al., 2003). Here, we focus on those most commonly used and relevant to metabarcoding studies, 

however there are many other options available that may be more suitable to a given monitoring or 

research objective. The most commonly used indices for metabarcoding include the pairwise 

dissimilarity measures: Jaccard index and Sørensen index (based on incidence data) and Bray-Curtis 

(based on abundance data) as well as the phylogeny based UniFrac (Galloway-Peña & Hanson, 2020; J. 

Liu & Zhang, 2021; Macher et al., 2018). Bray-Curtis can be calculated using either abundance or 

incidence data, and when calculated with incidence data it is the same as the Jaccard index (Galloway-

Peña & Hanson, 2020).  

The Jaccard and Sørensen indices are widely used similarity measures, however they have known 

limitations. These metrics ignore the relative magnitude of gains or losses in taxonomic units, or in other 

words, they are highly dependent on the overlap between two samples/sites but give less weight to 

unique detections in each community (Koleff et al., 2003). Additionally, these indices were shown not to 

accurately reflect differences in the dominant and rare across all scenarios, leading to biased estimates in 

some cases (Barwell et al., 2015). Despite these limitations, these two indices are useful for measuring 

turnover between communities and measuring variation among communities and they remain the most 

frequently used measures of dissimilarity for presence-absence data. Given the known biases associated 

with quantitative data generated using metabarcoding, they are widely applied in environmental 

genomics studies. Additionally, extensions to Jaccard and Sørensen indices are available to estimate beta 

diversity while accounting for unseen species by using abundance data or replicated incidence data 

(Chao et al., 2004). 

Bray-Curtis, when applied to abundance data, gives a measure of dissimilarity that is most useful for 

comparisons of community composition and relative abundance (Andersen et al., 2011). Bray-Curtis 

performs well across a range of conceptual and sampling properties compared to other abundance 

based beta-diversity metrics (Barwell et al., 2015). While Bray-Curtis is more commonly used for 

metabarcoding data, the Morisita-Horn Index (Jost, 2006) performs equally well for abundance data 

(Barwell et al., 2015; Lim et al., 2016). Bray-Curtis dissimilarity requires even sampling, and thus may not 

identify community differences unless data is rarefied (Leite & Kuramae, 2020).   

UniFrac is a widely used beta-diversity metric for bacterial microbiome studies using the 16S amplicon 

(Xia & Sun, 2017). This approach uses phylogenetic information, derived from 16S DNA sequences, to 

measure community similarity while accounting for phylogenetic relationships and can be calculated 

using presence/absence(unweighted) or abundance (weighted) data (Lozupone & Knight, 2005). 

Phylogenetic distance measures of beta diversity can provide more power for detecting community 

change by using the divergence between different sequences (Lozupone & Knight, 2005). While this is 

widely applied to microbiome studies, it does not apply well to other taxonomic groups since the marker 

genes used to study other taxonomic groups do not necessarily contain enough information to reveal 

phylogenetic relationships (Hajibabaei et al., 2007). As such, this approach is limited to cases where the 

same gene can be used for to resolve taxonomic units and evolutionary relationships. UniFrac values are 

known to be impacted by sampling effort, so appropriate methods to control or account for sampling 

effort should be applied when using UniFrac (Lozupone et al., 2011). Additionally, UniFrac values are less 

sensitive to changes in moderately abundant species and tend to be biased towards rare lineages or to 
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the most abundant lineages (Xia & Sun, 2017). Extensions to the UniFrac calculation have been 

developed to overcome these biases (Chang et al., 2011). 

 A new extension to the Hill Number framework was recently developed to calculate beta diversity using 

order number (q) to use incidence data (q = 0) or abundance data (q > 0) (Chao et al., 2023). As this is a 

new development it has yet to be widely applied and tested. However, given the advantages of the 

unified effective species number framework for alpha diversity metrics described above, extending this 

to include beta diversity may be very useful in accounting for the unique properties of metabarcoding 

data. 

Beta diversity is often visualized and statistically tested using distance- or model-based approaches that 

are discussed further in the Distance-based Analyses and Model-based Analyses sections below. 

4.2.3.1.3 Gamma Diversity 

Gamma diversity, the total diversity at large-scale or across a landscape, can be summarized using the 

same metrics as alpha diversity (Tuomisto, 2010b) and is most often reported in metabarcoding 

literature as richness (e.g, (He et al., 2022, 2023; Keck et al., 2022)). However, it can also be calculated in 

an effective species number framework, such as Hill Numbers (Tuomisto, 2010a) thus generating values 

that are comparable to alpha diversity metrics generated in the same framework and more easily 

interpreted as effective species numbers. 

4.2.3.1.4 Recommendations  

Given known quantitative biases with metabarcoding data, there is debate about the use of quantitative 

or presence/absence data for diversity metric calculations. Research has shown that diversity indices 

calculated using abundance data give more robust results by decreasing the impact of rare taxonomic 

units (Taberlet et al., 2018a). Beta diversity estimates are less biased when using sequence abundance 

data (Barwell et al., 2015). Furthermore, when calculating beta diversity abundance data can be 

informative to estimate the effect of unseen taxonomic units (Chao et al., 2004). Since abundance data 

may generate more robust results, we recommend using an approach where diversity metrics are 

calculated with and without abundance data using a unified framework where these values can be 

directly compared when possible (e.g., Hill Numbers). This enables easy comparison of trends across 

samples and/or sites using metrics that include and do not include abundance data (e.g., (Suter et al., 

2021)). Transformations are often recommended for quantitative analyses using metabarcoding (see 

Quantitative Analyses section). If quantitative data are used to calculate diversity metrics, results from 

different markers should be analyzed separately. Additionally, if analyses are being conducting at the 

level of sequence units (vs. taxonomy), different markers should be analyzed separately. 

Diversity metrics are generally sensitive to sampling effort (Stier et al., 2016). Where variation in 

sampling effort exists, user should select an approach that accounts for sampling effort or is robust to 

variation in sampling effort (e.g., (Bennett & Gilbert, 2016; Cardoso et al., 2009; Chao & Jost, 2012; R. K. 

Colwell et al., 2012)) or apply other methods of controlling for sampling effort (e.g., rarefaction) (see 

Controlling for Sampling Effort section).  
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4.2.3.2 Distance-Based Analyses 

Community data are often used to compare the abundance and distribution of organisms across 

environmental gradients or conditions, expanding on beta diversity comparisons and linking them with 

environmental variables. Community data have many properties that make analysis challenging, 

including intercorrelations between variables (i.e., biotic interactions between taxonomic units), non-

normal probability distributions, and particularly relevant for metabarcoding studies, lots of zeros and 

more taxonomic units than sites (Jupke & Schäfer, 2020). Distance-based ordination uses a distance 

metric (or dissimilarity metric) to summarize multivariate data in a low dimensional form (e.g.., species 

by site matrices collapsed to dissimilarities between sites), then the distances/dissimilarities between 

communities can be related back to environmental variables (Roberts, 2020). There are a variety of 

metrics available, each with their properties and assumptions. A distance metric and ordination method 

must be chosen to best suit the data and research or monitoring goals (Jupke & Schäfer, 2020). However, 

often data do not meet the assumptions of a chosen metric or method and data are coerced into a 

format that better meets these assumptions (e.g., transformation, rarefaction) (Leite & Kuramae, 2020). 

Distance-based analyses have been the primary method for analysing community data since they were 

introduced (Roberts, 2020), and they are the most frequently used method for analyzing metabarcoding 

data (Leite & Kuramae, 2020).  

There are a wide variety of distance metrics and ordination approaches available. We highlight those 

that are used frequently with metabarcoding data. The most common distance metrics used for 

metabarcoding data are Jaccard and Bray-Curtis (discussed in Beta Diversity section above). The most 

common ordination methods are non-parametric multidimensional scaling (NMDS) and principal 

coordinates analysis (PCoA), which are typically paired with permutational analysis of variance 

(PERMANOVA), analysis of similarities (ANOSIM), or Mantel test for statistical comparisons (Fujii et al., 

2019; G. Jeunen et al., 2019; Krah & March-Salas, 2022; C. V. Robinson et al., 2022; Staehr et al., 2022). 

These analyses may be paired with post-hoc tests to determine the contribution of individual taxonomic 

units (e.g., SIMPER (Suter et al., 2021)). Another common exploratory approach is cluster analysis, which 

is used to separate communities into groups based on their similarity scores (e.g., UPGMA (Garcia-

Vazquez et al., 2021; G. Jeunen et al., 2019); Ward’s method (Stefanni et al., 2018)). Indicator species can 

be identified for the different cluster or groups (e.g., (Hajibabaei et al., 2019; G. Jeunen et al., 2019; K. 

M. West et al., 2020)). Methods of visualizing environmental variables together with community data in 

an ordination are also often used (e.g., envfit (Tapolczai et al., 2021)). Constrained ordinations aimed at 

directly assessing specific environmental gradients of interest are also used, mainly canonical 

correspondence analysis (CCA) and redundancy analysis (RDA) (e.g., (Cobo-Díaz et al., 2019; Huo et al., 

2020)).  

General considerations and limitations for using distance-based ordination methods are presented 

elsewhere (Austin, 2013; Paliy & Shankar, 2016; Ter Braak & Šmilauer, 2015) and there is no single 

method that will apply in all scenarios. Distance-based methods are still under active development and 

new tools continue to emerge that overcome limitations of pre-existing methods (e.g., t-SNE (Roberts, 

2020)). The appropriate approach must be selected given the goals and properties of the data 

generated. There are several properties that apply to all metabarcoding datasets. First, the data are 

compositional in nature, meaning observation of each taxonomic unit within a sample are not 

independent of one another, which is an assumption of many statistical tests (Paliy & Shankar, 2016; 

Tedersoo et al., 2022). A range of data transformation options are used to address this although there is 
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no consensus around on a single transformation approach (e.g., (Banchi, Pallavicini, et al., 2020; 

Frankenfeld et al., 2022; C. V. Robinson et al., 2022; Tapolczai et al., 2021)). Second, metabarcoding data 

contains a lot of zeros, since many taxonomic units are only detected at a single site, further exacerbated 

by sequencing artefacts (Gold, Shelton, et al., 2023). Setting minimum read thresholds or minimum 

sample thresholds to remove taxonomic units that not detected across more than one sample or by a 

given number of sequences are common strategies to reduce the number of zeros in the data (e.g., 

(Shirazi et al., 2021)). There is no consensus in how these thresholds are applied for metabarcoding data 

and thresholds are often selected based on the properties of the data set being analyzed.  

There are several limitations to distance-based community analyses that have been raised. First, they 

reduce multi dimensional data into a distance matrix and do not retain any information on individual 

taxonomic unites present across samples (Roberts, 2020). Second, they do not account species specific 

mean-variance relationships (Warton et al., n.d.). Finally, distance-based metrics make a lot of 

assumptions and therefore, data are often made to fit the assumptions of the analytical approach 

instead of using models to understand the variation and unique properties of the data (Leite & Kuramae, 

2020). Some of these limitations are being addressed through model-based approaches described below, 

however comparisons of model-based and distance-based approaches show that distance-based 

approaches are robust compared to the current model-based approaches available (Jupke & Schäfer, 

2020; Roberts, 2020). As model-based tools for community analyses continue to expand updated 

comparisons will be needed.   

4.2.3.2.1 Recommendations 

An appropriate distance metric and ordination approach must be selected based on the properties of the 

data being analyzed as well as the research and monitoring goals. Data should meet the assumptions of 

the chosen approach. If data transformations are used to meet these assumptions, there may be biases 

introduced through those transformations (Leite & Kuramae, 2020), thus selecting a metric and data 

transformation approach is a trade-off that will depend on the research and monitoring goals. If 

quantitative data are used to calculate diversity metrics, results from different markers should be 

analyzed separately. Additionally, if analyses are being conducting at the level of sequence units (vs. 

taxonomy), different markers should be analyzed separately. 

Distance-based analyses are based on dissimilarity metrics, which are generally sensitive to sampling 

effort (Stier, Bolker, and Osenberg 2016). Where variation in sampling effort exists, users should apply a 

method of controlling for sampling effort (e.g., rarefaction) (see Controlling for Sampling Effort section), 

use a method that is robust to sampling effort (Beck et al., 2013) or demonstrate that communities have 

been sampling to an equal coverage despite variation in effort (i.e., all communities have been sampled 

to 95% coverage), if applicable (Chao & Jost, 2012). 

4.2.3.3 Model-based Analyses 

Model-based approaches to community analysis provide a means to jointly model multiple response 

variables (i.e., taxonomic units) and multiple fixed and random predictor variables (i.e., environmental 

conditions, study design) without reducing the dimensionality of the data (Warton, Blanchet, et al., 

2015). Model-based approaches for community modeling are rapidly evolving with many new tools 

becoming available over the last 10 years. We highlight two modeling frameworks that have emerged 
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and are being used with metabarcoding data and discuss the advantages and limitations of these 

approaches.  

4.2.3.3.1 Joint Species Distribution Models (JSDM) 

Joint species distribution models make inferences at the community level by jointly modeling individual 

taxa distributions while acknowledging that taxa respond jointly to environmental conditions (Tikhonov 

et al., 2020). Modeling multiple taxa together improves predictions compared to single taxon models by 

using structure across taxa (Warton, Blanchet, et al., 2015). Joint species distribution models have been 

used to make inferences based on metabarcoding data and they can accommodate taxonomic data and 

well as molecular operational taxonomic units (Abrego et al., 2020; Fukasawa et al., 2022; Kačergytė et 

al., 2023; Tikhonov et al., 2020), however these models are yet to see widespread use in the 

environmental genomics community.  

Ordinations can be conducted using a modelling approach with latent variables, such as a joint species 

distribution model. This model-based approach to ordination allows the compositionality of 

metabarcoding data to be accounted for using a site effect and the axes of the ordination use a 

probability distribution specified by the user to capture the variability in the dataset being used (Leite & 

Kuramae, 2020; Warton, Foster, et al., 2015). This approach can also estimate correlations across taxa, 

which is not possible with distance-based approaches that do not retain individual information on 

individual taxonomic units (Roberts, 2020; Warton, Blanchet, et al., 2015). There are many different 

frameworks available for running latent variables models, but those that have been used for 

metabarcoding data generally fall within joint species distribution models and provide additional 

relevant functionality (e.g., HMSC (Tikhonov et al., 2020)).  

Additional information can be included in joint species distribution modeling to improve performance 

and inference, including phylogenetic and trait data (Ovaskainen & Abrego, 2020; Tikhonov et al., 2020). 

These data cannot necessarily be captured in distance-based approaches. Since this modeling approach 

is new, there are relatively few examples where joint species distribution models have used to their full 

capacity, including trait and phylogenetic information (but see (Abrego et al., 2022)). However, there is 

potential to see an increase in uptake of this approach since it accounts for many properties unique to 

community metabarcoding data.  

4.2.3.3.2 Models for Imperfect Detection 

While JSDM can account for a lot of environmental and design factors, they do not account for imperfect 

detection. Imperfect detection can occur at multiple levels in metabarcoding data (i.e., at the level of 

biological replicates and at the level of technical replicates) (Ficetola et al., 2015). Hierarchical species 

occupancy models were developed to analyze species distributions when the probability of detection or 

capture is less than 1 (Willoughby et al., 2016). By accounting for false negatives at multiple levels as well 

as environmental variables, these models generate robust ecological conclusions and can be used to 

inform optimal sampling design and methodology by improving our understanding of eDNA capture and 

detection probabilities (McClenaghan, Compson, et al., 2020). These models have been widely applied in 

single-species studies using eDNA and have started to be used for multi-species metabarcoding studies 

(Doi et al., 2019; McClenaghan, Fahner, et al., 2020). Calculating detection probabilities also generates a 

metric by which the reliability of the results can be assessed (Ficetola et al., 2015). A thorough 

explanation of occupancy models is included as Appendix A. 
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While accounting for imperfect detection can greatly improve estimates of species occurrence, there are 

limitations to this framework. Occupancy modelling is less robust when the probability of detection is 

relatively low and the number of replicates is also low (Willoughby et al., 2016). Sufficient replication is 

needed for accurate estimates with low detection probabilities, and low detections probabilities are not 

uncommon when using metabarcoding to assess whole communities (Hestetun et al., 2021). There is 

potential for false positives to be incorporated into occupancy models, but thus far only in single-species 

models and even so the data required to conduct an analysis with false positives may be challenging to 

obtain (e.g., deploying a secondary survey method) (Lahoz-Monfort et al., 2016). Species occupancy 

models do not account for correlations between species like JSDM, however models have recently been 

developed that incorporated JSDM and imperfect detection (Tobler et al., 2019). This integrated 

approach is likely to become more common but has not yet become widely used.  

Hierarchical models that use abundance (N-mixture models) rather than presence-absence data can be 

fit using the same framework. Quantitative metabarcoding data has started to be used in this framework 

(Gold, Kelly, et al., 2023), although this framework is most often used with presence-absence data. Using 

quantitative metabarcoding data in hierarchical modeling is subject to the biases discussed in the 

Quantitative Analyses section and require careful interpretation since read counts are not the same units 

as individuals.  

4.2.3.3.3 Recommendations 

Model based approaches have the advantage of directly modeling the data and its properties and 

generating results for individual species and whole communities. However, models are more complex to 

fit, needing to estimate multiple parameters for taxonomic units and samples, and computationally 

intensive (Roberts, 2020). Generally, computational resources won’t be a limiting factor for analyzing 

metabarcoding data as significant computational resources are already required for other steps in the 

bioinformatic workflow. However, for whole community comparisons (i.e., community-level change) 

models have not outperformed distance-based methods in simulation tests (Jupke & Schäfer, 2020; 

Roberts, 2020). As such, consideration of study goals will need to guide the choice of approach used for 

community analyses. Where high confidence detections units are needed, hierarchical occupancy 

models will provide a measure of reliability and can also inform robust sampling designs. Where 

community-level change that accounts for species interactions, traits, and/or phylogeny is desired, a 

joint species distribution model is recommended. Both modeling frameworks introduced here are under 

active development and model-based tools will likely increase in speed, accuracy, and ease-of-use. As 

the field evolves continued testing and comparison of approaches to community analyses will be 

required. These two modeling frameworks enable the use of common metrics to assess the power of 

these models to detect change in communities. For example, HMSC provides explanatory and predictive 

power metrics to assess the performance of the model across individual species or averaged across the 

whole community (Ovaskainen & Abrego, 2020). Power and trends are measured on a species-by-species 

basis in both modeling frameworks which distinguishes them from distance-based approaches which 

generate a single metric for the whole community. Given this distinction estimates of power cannot be 

compared between model-based approaches and distance-based approaches, however simulated data 

can be used to compare methods and determine each approach’s sensitivity to community change (e.g., 

(Roberts, 2020)).  
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4.2.3.4 Networks & Food Webs 

Network analysis is an increasingly popular tool for community analysis, including metabarcoding-based 

analyses, and can range from (relatively) simple co-occurrence networks to complex food webs that 

incorporate trophic and trait data (e.g., (Compson et al., 2018; Horn et al., 2019; Lanzén, Dahlgren, et al., 

2021; C. V. Robinson et al., 2022)). Network analysis pairs well with metabarcoding data because 

metabarcoding can generate data on a broad range of organisms in an ecosystem (Compson et al., 2020). 

Networks can be constructed based on presence or abundance data, though read abundance data are 

generally scaled by sequencing depth (see Quantitative Analysis and Controlling for Sampling Effort 

sections) (Ritter et al., 2021). 

Networks, even basic co-occurrence networks, can generate a wide variety of metrics to assess 

community structure (e.g., modularity, nestedness, diameter, average path length, transitivity, 

connectivity, etc.) (D’Alessandro & Mariani, 2021; Fais et al., 2020; Ritter et al., 2021; Tedersoo et al., 

2022). These metrics provide a summary of a complex community and have been shown to reflect 

anthropogenic impacts on ecosystems using eDNA-based networks (Lanzén, Dahlgren, et al., 2021). This 

has led to suggestions that network metrics could be used as indicators of ecosystem function and/or 

integrity for biomonitoring and could be used as global indicators for ecosystem status (Compson et al., 

2020; Cordier et al., 2021). Despite the promise of network analysis to provide broad-scale metrics of 

ecosystem status, we do not currently have enough information or understanding of the interactions 

between network properties, ecosystem function, and response to stressors, disturbance, or impact 

(Barroso-Bergadà et al., 2021; Clare et al., 2019; Cordier et al., 2021; C. V. Robinson et al., 2022). The 

ecological implications of network properties from eDNA remain difficult to interpret (Lanzén, Dahlgren, 

et al., 2021) and networks are sensitive to the compositionality of data, which applies to metabarcoding 

data, further complicating interpretation (Tedersoo et al., 2022). Additionally, molecular taxonomic units 

must be reconciled across studies before metrics based on unique sequences can be applied at a global 

scale (D. M. Evans et al., 2016). Further research is needed to understand how stressors and 

disturbances affect network properties and how changes in eDNA-based network properties should be 

interpreted before networks can be applied as indicators of ecosystem status or impacts.  

Much of the research on eDNA-based networks has focused on co-occurrence networks, however, 

depending on whether taxonomic identifications or molecular taxonomic units are used to create these 

networks, additional layers of data can be integrated into networks. For example, trophic information 

can be integrated to create food webs if networks are created with taxonomic identification 

(D’Alessandro & Mariani, 2021). Adding trait data can be very time intensive, though new tools are 

being trialled to facilitate this process (e.g., machine learning (Compson et al., 2018)). For microbial 

networks created using sequence data, both functional data and phylogenetic data have been included 

in networks (D. M. Evans et al., 2016; Z. Liu et al., 2021). While incorporating more data should generate 

more robust and reliable networks, more research is needed to inform the interpretation of complex 

networks generated with metabarcoding data.  

4.2.3.5 Reporting Recommendations for All Community Analyses 

To enable appropriate interpretation, reporting for all community analyses should note whether 

quantitative or incidence-based data was used to calculated metrics, what markers were used, if data 

from different markers were combined, any data transformations used, and the taxonomic unit used for 

metric calculations (e.g., species or molecular operational taxonomic unit). Metabarcoding data is often 
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collected using replicated samples (biological or technical replicates) and community analyses can be 

calculated with replicates combined or separate. Replicates are not independent observations so 

interpretation must consider the unit of measure used for the calculation of community metrics. 

Reporting should note how data from biological and technical replicates was handled. Across many 

community analyses, low prevalence taxonomic units are removed to reduce noise and increase the 

power to detect community level patterns. If applied, the threshold used to remove lore prevalence taxa 

should be reported. 

4.3 Field Metadata 

Collecting the appropriate metadata during sample collection is essential for the effective interpretation 

of eDNA data. In addition to facilitating interpretation, metadata standards allow for better data 

integration and interoperability, reproducibility, quality, and collaboration (Field et al., 2008; Kimble et 

al., 2022; Yilmaz et al., 2011). Alongside the use of metadata standards, the use of metadata 

management software can lead to increased structure and help prevent idiosyncratic entries by reducing 

the number of manual entries that can lead to incompatible data and decreased data integrity (Kimble et 

al., 2022). 

There are multiple standards available describing essential and recommended metadata fields that 

should be recorded when analysing eDNA depending on the type of analysis is performed. The most 

relevant and widely used is the MIxS (Minimum information about any (x) sequence) framework (Yilmaz 

et al., 2011) compiled by the Genomic Standards Consortium, which provides guidelines for the 

minimum information about any type of sequence. This framework provides guidelines for the minimum 

information required for any type of DNA sequence and includes more specific guidelines for certain 

types of analysis, including marker gene sequencing (MIMARKS), metagenomes (MIMS), and genome 

sequencing (MIGS).  

The shared descriptors in these frameworks include sample descriptors, temporal and geospatial 

descriptors, and technical metadata listed below: 

• Project Name 

• Sample Name 

• Sample Size 

• Collection Date 

• Geographic Location (Country/Sea/Region) 

• Geographic Location (latitude and longitude) 

• Broad-scale Environmental Context (i.e., biome)Local Environmental Context (e.g., cliff, harbour, 

etc.)Environmental Medium (e.g., soil, sediment, seawater) 

• Sequencing Method 

Required and recommended metadata fields specific to each analysis workflow are also provided. There 

is also a framework for metadata related to Quantitative Real-Time PCR (qPCR) experiments (MIQE) 

(Bustin et al., 2009) that provides standards for metadata when qPCR techniques are used to analyse 

eDNA samples. 

Additional metadata about the sampling environment should be also recorded to provide a robust basis 

for analysis, interpretation, and comparability. There are several environmental packages defined by the 
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MIxS framework that include water, soil, sediment, and air among others, which are the most relevant to 

conventional eDNA sampling. These packages include fields and descriptions for commonly collected 

metadata pertinent to the environment from which samples were collected (e.g., chlorophyll, 

conductivity, or dissolved oxygen from a water sample).  
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5 Metagenomics 

Amplicon sequencing has revolutionized biodiversity assessment by enabling the identification of novel 

organisms based on their DNA sequences. However, the lack of culture representatives for many groups 

(i.e., those that could be easily cultured within the laboratory), such as Archaea, demanded a new 

approach. In 1996, Stein et al., reported the first attempt to address this problem through random 

shotgun sequencing of archaeal clones extracted from picoplankton assemblage collected in the Pacific 

Ocean. Two years later, the term "metagenome" was coined to describe "the collective genomes of soil 

microflora" (Handelsman et al., 1998). Since then, "metagenomics" have been used to describe various 

data structures. Although the terminology surrounding metagenomics can be confusing, untargeted 

shotgun metagenomics provides a powerful tool for investigating the functional potential and taxonomic 

composition of environmental DNA. 

In recent years, the reduced cost and improvement in DNA sequencing have enabled large-scale 

metagenomics to study global biodiversity (Sunagawa et al., 2020). This approach involves extracting 

total DNA from a sample, such as water, soil, fecal, biopsy, or swab, and preparing a sequencing library 

depending on the sequencing technology platform. Illumina (HiSeq, NextSeq, and NovaSeq) is currently 

the most common sequencing platform for metagenomic sequencing, generating 150-250bp sequence 

reads. PacBIO and Oxford Nanopore can sequence longer DNA fragments but are less frequently used 

due to the higher cost. The higher taxonomic and functional resolution of metagenomic sequencing has 

significantly improved our understanding of the biodiversity and provided insights into functional role of 

organisms in an ecosystem.  

5.1 Metagenomics Quality Control and Filtering 

When it comes to filtering primers and removing low-quality reads from raw metagenomics data, several 

crucial factors must be considered to ensure a robust approach. These factors encompass sequence 

quality, adapter removal, read length distribution, throughput speed, and the impact on downstream 

analysis. Selecting the most suitable tool depends on the quality of the input data and time constraints. 

Each tool typically employs slightly different default cut-offs, but these parameters can be adjusted 

manually within the respective tools. It is worth noting that the majority of existing tools are designed 

for the Illumina sequencing platform, which is currently the standard for metagenomic sequencing. By 

carefully considering these factors and the specific requirements of the project, one can make informed 

decisions about the appropriate tool to employ for their metagenomics data analysis. 

Trimmomatic (Bolger et al., 2014) is a widely used tool for trimming Illumina sequencing reads. It 

provides various trimming options, such as removing adapter sequences, trimming low-quality bases, 

and removing reads below a certain length threshold. Cutadapt (C. Martin, 2011) is another popular tool 

for adapter trimming in metagenomics. It has a flexible algorithm that can handle a wide range of 

adapter sequences and provides various quality trimming options. BBDuk (part of the BBMap suite; 

Bushnell, 2014) is a comprehensive tool for quality trimming and adapter removal. It offers advanced 

options for handling complex adapter sequences and has built-in error correction capabilities. Fastp (S. 

Chen et al., 2018) is a relatively new tool that has gained popularity in the metagenomics community. It 

performs both adapter trimming and quality filtering and is known for its fast-processing speed. 
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With the ever-increasing sequencing throughput of platforms like Novaseq, the need for faster 

performance has become a critical consideration in metagenomic data analysis. We need to find tools 

that can maintain the same level of quality while significantly reducing processing time. In a recent 

benchmarking study conducted by Chen et al., 2011, various metagenomic trimmers, including FASTQC, 

Cutadapt, SOAPnuke, AfterQC, and Trimmomatic, were compared. The results of the study revealed that 

Fastp outperforms other tools in terms of performance speed. Additionally, when compared to other 

tools for adapter trimming, base correction, sliding window quality pruning, polyG and polyX tail 

trimming, Fastp consistently achieved either the same or improved quality outcomes (S. Chen et al., 

2018). These findings highlight Fastp as an ultra-fast fastq processor and a robust tool for metagenomic 

quality control and filtering. Fastp is an open-source tool and is publicly available on GitHub, further 

enhancing its accessibility to researchers in the field. 

5.2 Read-based metagenomics 

Read-based metagenomics is a powerful tool for profiling the taxonomy and functional capacity of eDNA. 

This approach allows us to gain insights into the genetic material present in a sample, even if we do not 

know which specific organisms are contributing to it or if the genes are not annotated in publicly 

available databases. To achieve this, read-based metagenomics relies on comparing high-quality reads to 

external sequence databases using supervised learning methods. There are four main approaches for 

taxonomic assignment: 

1. Similarity search: this method uses homology or alignment-based methods based on the lowest 

common ancestor (LCA) to compare the query sequence to databases. Examples of tools that 

use this approach include BLAST (Altschul et al., 1997) and MEGAN (Huson et al., 2011). 

2. Composition methods: this approach uses k-mer counts or frequencies to compare the query 

sequence to databases. Examples of tools that use this approach include KRAKEN (D. E. Wood & 

Salzberg, 2014) and CLARK (Ounit et al., 2015). 

3. Phylogenetic approach: this method uses evolutionary models coupled with homology-based or 

interpolated Markov models to compare the query sequence to databases. An example of a tool 

that uses this approach is Phymm (Brady & Salzberg, 2009). 

4. Short-read mapping: In the short-read mapping strategy, sequences that have successfully met 

quality standards are aligned to a known reference genome. This approach is frequently 

employed in metagenomics to address targeted inquiries concerning the presence of genes or 

genomes, rather than aiming to comprehensively characterize community makeup. Among the 

software options available, two prominent contenders that have consistently outperformed 

alternative approaches are bwa (H. Li & Durbin, 2009) and bowtie2 (Langmead & Salzberg, 

2012). 

Each of these approaches has its strengths and weaknesses, and the choice of method will depend on 

the specific research question and available resources. The homology-based method, such as BLAST, is a 

commonly used approach that searching each query sequences against large databases. While this 

method is reliable in providing a robust taxonomic resolution, it can be computationally intensive and 

time-consuming, especially for deep shotgun metagenomics with millions of reads. The Megablast (Y. 

Chen et al., 2015) algorithm was developed as a solution to this issue, but for extremely large datasets, 

alternative strategies may be necessary to expedite the process. 
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The phylogenetic approach is an evolutionary-based method that uses maximum likelihood, neighbor-

joining, or Bayesian methods to determine the appropriate placement of a query sequence on a 

phylogenetic tree (Bazinet & Cummings, 2012). This approach uses simple observation to find where an 

inserted branch is divergent from a node representing a species or higher rank. However, the 

phylogenetic-based methods can be computationally demanding as it involves multiple alignments, fixed 

topology (e.g., NCBI taxonomy), and the insertion of a query sequence into the reference alignment. 

These steps require significant computational power, and therefore, the phylogenetic approach may not 

be suitable for large-scale datasets.  

Compositional methods, such as Naive Bayesian classifiers, interpolated Markov models (IMMs), and k-

mer/k-nearest-neighbor algorithms such as Kraken2, and CLARK (Ames et al., 2013), offer faster 

computational speeds compared to alignment or phylogenetic-based approaches. However, it is 

important to note that these methods do require a substantial amount of computational memory since a 

pre-computed database needs to be loaded into memory beforehand. 

Marker-based algorithms present another read-based analysis, employing a selected set of 

representative genes, or markers, instead of relying on an extensive database encompassing all known 

sequences for microbial composition profiling. These methods, which do not require genome assembly, 

have been successfully employed in taxonomic and functional analysis of large human-associated 

metagenomic datasets from the MetaHIT and HMP consortia. Notably, mOTU (Ruscheweyh et al., 2021) 

and MetaPhlAn (Manghi et al., 2023) have been utilized for this purpose. For instance, the application of 

clade-specific markers from the CHOCOPhlAn database, incorporated in MetaPhlan, has demonstrated 

accurate estimation of microbial composition, along with improved computational efficiency. However, it 

is important to note that profiling unknown microbes, particularly regarding gene families and functions, 

can be challenging. The HUMAnN package, commonly used for pathway and gene family profiling, often 

encounters 40% unmapped reads, as reported by Franzosa et al. (2018). While reference genome 

databases and marker accuracy continue to expand, issues such as incomplete or insufficient annotation 

of these databases persist. 

5.2.1 Taxonomic classification 

The Critical Assessment of Metagenome Interpretation (CAMI; Meyer et al., 2022; Sczyrba et al., 2017) 

challenge is a pivotal initiative that has significantly propelled the field of metagenomic analysis forward. 

By establishing a comprehensive benchmarking framework, CAMI offers a standardized platform to 

assess and compare the performance of diverse tools employed in the interpretation of metagenomic 

data. In this challenge, the same benchmarking datasets including marine and host associated 

metagenomic communities were used by participants to analyse the raw data using their respective 

metagenomic tool. Leveraging the results obtained from CAMI, we can impartially examine and 

scrutinize the capabilities and limitations of various metagenomic tools. This unbiased approach enables 

us to gain a deeper understanding of their effectiveness, and to make informed decisions when selecting 

the most suitable tools for the metagenomic analysis. 

For users who have access to high-memory computational resources, Kraken classifiers provide reliable 

taxonomic estimations across a wide range of metagenomic datasets, including environmental DNA and 

host-associated microbiota. The Kraken package utilizes a k-mer based algorithm and is complemented 

by derivative tools such as Bracken, KrakenUniq, and Kraken2 (D. E. Wood et al., 2019; D. E. Wood & 
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Salzberg, 2014). One notable advantage of Kraken is its flexibility in creating custom databases, and it 

sets itself apart by delivering exceptional runtime performance compared to alternative tools.  

In situations where high-memory computers are not available, Metaphlan (Manghi et al., 2023) which is 

a marker-based approach emerges as a recommended choice due to its impressive accuracy and minimal 

memory requirements. It should be noted, however, that Metaphlan does not support custom databases 

and is primarily tailored for analyzing microbial communities. As an alternative approach, Centrifuge 

(Kim et al., 2016) offers the ability to utilize custom databases when high-memory machines are 

inaccessible (Ye et al., 2019). Another highly accurate option is Megablast (Z. Zhang et al., 2000), which 

can leverage extensive databases such as the National Center for Biotechnology information (NCBI) non-

redundant nucleotide (nt) database. However, a drawback of using Megablast is the extensive processing 

time, which can take weeks to complete the analysis of a single dataset. Currently, there exists a 

considerable gap in the completeness of reference databases for environmental DNA, particularly for 

metagenomic data requiring whole genomic references to cover the metagenomic reads. To tackle this 

challenge, we recommend utilizing large databases such as nt, which can be coupled with time-efficient 

tools like Kraken to ensure comprehensive analysis (Singer et al., 2020).  

5.2.2 Functional annotation 

BLASTP (Altschul et al., 1997) has long been considered the gold standard for protein alignment in 

metagenomics. However, similar to the challenges faced by BLASTN (Camacho et al., 2009) in taxonomic 

assignment, BLASTP suffers from time inefficiency in protein alignment. For instance, Buchfink et al., 

(2021) estimated that aligning the non-redundant protein (nr) database from NCBI against the UniRef50 

database using BLASTP would require over two months on a cluster with 20,800 cores. 

Several alternatives to BLASTP exist, including MEGAN (Huson et al., 2011), DIAMOND (Buchfink et al., 

2021), and MMSeq2 (Steinegger & Söding, 2017). However, DIAMOND stands out for its exceptional 

speed and accuracy. It delivers impressive performance and enables the use of custom databases, 

making it suitable for diverse datasets. 

On the other hand, tools like MG-Rast (Meyer et al., 2008) and Humann (Franzosa et al., 2018) focus 

more on functional annotations using previously identified markers and provide annotations at the 

species level. For robust functional annotations across different functional levels and systems, Humann3 

is a recommended tool. However, it is primarily designed for the analysis of microbial communities. 

As an alternative to Humann, a viable approach for diverse datasets involves using DIAMOND for protein 

alignment, clustering the identified proteins, and utilizing a protein annotation tool such as EggNOG 

(Huerta-Cepas et al., 2017). It is important to note that read-based approaches for functional profiling, 

such as Humann, in metagenomics do not offer high functional resolution. Metagenomic reads often lack 

complete genes or functional pathways, leading to false-positive results. Therefore, the recommended 

approach for functional annotation in metagenomics is to employ assembly-based approaches, which 

will be discussed in the subsequent section. 

5.2.3 Functional inferences using amplicon sequencing. 
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Metagenomic analysis provides direct functional insights but can be expensive, time-consuming, and 

requires greater computational resources. As an alternative, tools like Picrust (Langille et al., 2013) offers 

a different approach to functional prediction, circumventing some of the challenges posed by 

metagenomics. This approach utilizes amplicon markers, notably the 16S rRNA gene, as a basis for 

estimating the potential functions of microorganisms. This method depends on comprehensive 

databases of bacterial genomes that link 16S markers to an array of possible functions in different 

species. Following Picrust, the development of similar tools like Tax4Fun2 (Wemheuer et al., 2020), 

Piphillin (Iwai et al., 2016), and Picrust2 (Douglas et al., 2020) has further expanded the capabilities of 

this approach. These tools are particularly valuable for generating hypotheses in microbial studies in a 

cost-effective manner. By predicting the functional capabilities of microorganisms from a less detailed 

dataset, they provide an initial insight into the roles these microorganisms may play in their respective 

environments. 

Despite the advantages of using Picrust as an alternative to direct metagenomic analysis, there are 

inherent challenges. The resolution of Amplicon Sequence Variants (ASVs) obtained through this method 

often does not extend to the species level. When it does, the functional potential can vary significantly 

among different strains within the same microbial group, posing a challenge in accurately characterizing 

microbial functions. Although broad functional categories like KEGG and COGG pathways might appear 

similar in both amplicon-based predictions and direct metagenomic analyses, the specifics of functional 

mapping can vary greatly. This is primarily due to the lack of strain-level resolution in amplicon-based 

functions, underscoring the need for subsequent detailed metagenomic studies for comprehensive 

functional understanding. 

5.3 Assembly-based Metagenomics 

In recent years, the cost of sequencing has significantly decreased, leading to a remarkable expansion in 

genomic data across various organisms. However, despite these advancements, existing sequencing 

technologies are limited to generating relatively small genomic fragments, typically ranging from 150 

base pairs (e.g., Illumina) to approximately >10-20 kilobases (e.g., PacBIO). Considering that the size of a 

typical bacterial genome is around 5 million base pairs, the process of reconstructing the complete 

genome necessitates the utilization of sophisticated computational algorithms capable of assembling 

these short sequencing reads into a coherent whole. 

In genome assembly, two primary approaches are utilized: reference-based and de novo assembly (also 

known as reference-independent assembly). Given the incomplete nature of genomic reference 

databases, it is crucial to employ an unbiased reference-free approach when reconstructing the 

metagenome structure of environmental and host-associated genomes. While there have been some 

efforts to utilize reference-guided methods (Dutilh et al., 2009; Lischer & Shimizu, 2017), de novo 

assemblers have predominantly been employed for the assembly of microbial genomes and 

metagenomics (Quince et al., 2017). 

The de novo assembly approach in genome assembly can be categorized into three main categories: OLC 

graph, string graph, and de Bruijn graph. OLC algorithms, including Celera (Myers et al., 2000), AMOS 

(Treangen et al., 2011), and PCAP (Huang et al., 2003), operate by identifying overlaps among reads, 

constructing a layout graph based on these overlaps, and inferring consensus reads from the layout.  

String-based methods, such as SGA and FALCON (Chin et al., 2016), are derived from OLC graph-based 
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methods and aim to eliminate duplicate and substring reads before building graph layouts. De Bruijn 

graph is the most widely used de novo assembly framework, where reads are divided into k-mers 

representing nodes. Overlapping nodes with k-1 bases form arcs within reads, while k-mers sharing k-1 

bases between reads create direct edges. De Bruijn graphs can be classified into Hamiltonian and 

Eulerian graphs. Hamiltonian graphs represent nodes as k-mers, and the edge represents the overlap 

(similar to OLC approach), while Eulerian graphs consider k-mers as edges. Eulerian-based algorithms like 

IDBA-UC (Peng et al., 2012) and SPAdes (Bankevich et al., 2012) are more effective for assembling large 

genomes compared to Hamiltonian-based algorithms like SOAPdenovo and Velvet (Zerbino & Birney, 

2008), as they avoid a simplification step required in constructing the Hamiltonian path. The results of 

the CAMI challenge indicate that meta-SPAdes, a specialized variant of the SPAdes package designed for 

metagenomic data, outperforms other assemblers when dealing with large environmental datasets and 

human-associated microbiota. It has established itself as the current gold standard for metagenomic 

assembly. 

5.3.1 Metagenomic binning: resolving genomes from metagenomics. 

Metagenomic assembly generates thousands of contigs with varying lengths, but their origins and the 

number of genomes present in a community remain unclear. Unsupervised binning is a common 

approach for identifying metagenome assembled genomes (MAGs). Binning algorithms predominantly 

rely on tetranucleotide frequencies (Dick et al., 2009) and coverage information to identify similarities 

between contigs and cluster them together. Some widely used metagenomic binning algorithms include 

CONCOCT (Alneberg et al., 2014), MetaBAT (Kang et al., 2019), and MaxBin (Wu et al., 2016). 

Genome-resolved metagenomics has facilitated the discovery of numerous microbial groups without 

representative cultures and significantly improved microbial genome collections (Nayfach, Roux, et al., 

2021). However, assessing the quality of MAGs remains challenging. The current metrics, completeness, 

and contamination, based on single-copy core genes, lack sensitivity, and fail to evaluate the quality of 

the accessory genome (Parks et al., 2015). 

5.3.2 Challenges and opportunities in de novo assembly metagenomics 

De novo assembly of metagenomic data presents several challenges that stem from the complexities 

inherent in analyzing mixed microbial communities. These challenges include: 

1. Sequencing Errors: Metagenomic datasets often contain errors introduced during sequencing, 

which can lead to incorrect base calls and complicate the assembly process. De Bruijn graph-

based assemblers, like Meta-IDBA (Peng et al., 2011), MetaVelvet (Namiki et al., 2011), and 

metaSPAdes (Bankevich et al., 2012), are sensitive to these errors, potentially resulting in the 

generation of fragmented or erroneous contigs. 

2. Repetitive Regions: Repetitive regions in genomes can cause ambiguity in the assembly graph. In 

metagenomics, this challenge is exacerbated as repetitive regions may arise from multiple 

distinct species or strains with similar genetic sequences. Resolving these regions accurately is 

difficult and can lead to fragmented assemblies. 

3. Uneven Genomic Coverage: Unlike traditional genome assembly, metagenomic samples 

comprise a mixture of organisms, each with varying abundances. High abundance genomes are 

well represented in the data and are more likely to be accurately assembled. However, low 
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abundance genomes may have sparse coverage, making it challenging to reconstruct their full 

genomes, resulting in fragmented contigs. 

4. Highly Diverse Microbial Communities: Metagenomic samples can contain highly diverse 

microbial communities, with varying levels of relatedness between species. As a result, 

assembling individual genomes from such complex mixtures becomes intricate and may lead to 

chimeric contigs or the merging of sequences from different organisms. 

5. Incomplete Genomes: Due to the presence of rare or low-abundance species, some genomes 

may not be sufficiently covered to produce complete assemblies. This leads to gaps in the 

assembled contigs, hindering our ability to comprehensively study the microbial diversity 

present in the sample. 

6. Computational Resources: The computational demands of de novo assembly for metagenomic 

datasets can be substantial, particularly for large-scale studies or when using long-read 

technologies. Assembling billions of reads and constructing complex graphs necessitates 

powerful computational infrastructure and sufficient memory. 

To address these challenges in metagenomic de novo assembly, specialized methods and algorithms 

were developed that has a potential to improve and overcome the mentioned obstacles. These include: 

1. Abundance-Dependent Assembly: Binning algorithms, such as MetaBAT (Kang et al., 2019) and 

MaxBin (Wu et al., 2016), group contigs based on their abundance patterns, aiding in the 

reconstruction of individual genomes from complex communities. By leveraging abundance 

information, these methods can improve the assembly of low-abundance genomes. 

2. Hybrid Assembly: Integrating data from both short-read and long-read sequencing technologies 

(hybrid assembly) can help resolve complex regions and produce more contiguous assemblies. 

Long-read technologies, such as PacBio and Oxford Nanopore, are particularly valuable for 

spanning repetitive regions and improving contig continuity. 

3. Iterative Approaches: Some assemblers, like IDBA-UD (Peng et al., 2012), use iterative strategies 

to refine the assembly graph, potentially leading to better contig lengths and quality, particularly 

for challenging metagenomic datasets. 

4. Reference-Guided Assembly: Utilizing reference genomes, when available, can aid in the 

assembly process by anchoring reads to known sequences, potentially filling gaps in low 

coverage regions and providing a scaffold for the assembly. 

5. Error Correction: Employing error correction tools, such as BayesHammer (Nikolenko et al., 

2013), and BFC (H. Li, 2015), can help identify and rectify sequencing errors before assembly, 

improving the accuracy of the final contigs. 

6. Validation and Quality Assessment: It is essential to validate the quality of assembled contigs 

using tools like CheckM (Parks et al., 2015) or QUAST (Gurevich et al., 2013), which assess the 

completeness and accuracy of the reconstructed genomes. 

By combining these approaches and leveraging the strengths of various tools, we can mitigate the 

challenges associated with de novo assembly in metagenomics and gain deeper insights into the 

structure and function of complex microbial communities. However, given the diverse nature of 

metagenomic datasets, no single method may provide a complete solution, and selecting appropriate 

strategies based on the specific characteristics of the dataset remains crucial for successful metagenomic 

assembly. 
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5.3.3 A comprehensive genome resolved metagenomic pipeline for prokaryote and eukaryote 

organisms. 

In this section, we present a robust metagenomic pipeline designed to gain insights into prokaryote, 

eukaryote, and viral genomes present within complex metagenomic datasets and implemented for 

genome-resolved metagenomic analysis in the Centre for Environmental Genomics Applications, located 

in St. John’s, NL, Canada (see Figure 13). 

5.3.3.1 Metagenomic assembly 

We processed the raw shotgun reads by employing Fastp (S. Chen et al., 2018) to eliminate low-quality 

reads and Illumina adapters. Subsequently, we utilized metaSPADE (Bankevich et al., 2012) for the 

assembly of filtered reads, with contigs shorter than 1kb being removed to minimize misassemblies. To 

gain insights into the metagenome communities, we mapped the filtered reads to the remaining contigs 

using BWA-mem (H. Li & Durbin, 2009), generating a coverage information table. We adopted the 

assumption that reads originating from the same cell would have similar consistent coverage information 

and tetranucleotide frequencies, which led us to bin similar contigs together using Metabat2 (Kang et al., 

2019). To assess the quality of these bins, we performed CheckM (Parks et al., 2015) and EukCC (Saary et 

al., 2020) analyses to identify single-copy core genes for prokaryote and eukaryote MAGs, respectively. 

Additionally, we calculated the total assembly length of each bin using a custom Python script. This 

comprehensive approach ensured the acquisition of accurate and reliable metagenomic contigs and 

bins. 

5.3.3.2 Prokaryote MAGs 

Bins meeting specific criteria were selected as prokaryote MAGs, requiring >70% completion, <10% 

contamination (CheckM), and a size of >2.5Mb to ensure they possessed the minimum required 

information. For taxonomic prediction of these MAGs, we utilized the GTDB-tk (Chaumeil et al., 2020) 

algorithm, which aligns GTDB markers against the genomes, facilitating the generation of alignments for 

phylogenetic trees. To further enhance our understanding of these MAGs, we employed Bakta 

(Schwengers et al., 2021) for CDS annotation and preliminary functional predictions. For comprehensive 

functional annotation, we ran eggNOG mapper2 (Huerta-Cepas et al., 2017) with DIAMOND and HMM 

models, enabling the prediction of Gene Ontology (GOs), Enzyme Commission number (EC), Kyoto 

Encyclopedia of genes and genomes (KEGG), and pfmas. This rigorous annotation process allowed us to 

gain insights into the functional characteristics and taxonomy of the selected prokaryote MAGs. 

5.3.3.3 Eukaryote MAGs 

We assessed the genomic composition of the remaining bins (not categorized as prokaryote MAGs) using 

EukRep (P. T. West et al., 2018). Bins meeting specific criteria were selected as Eukaryote MAGs, 

requiring >1Mb of Eukaryotic DNA (EukRep), >2.5Mb in length, >90% completion, and <10% 

contamination (EukCC) to ensure they contained sufficient and reliable information. To predict the 

taxonomy of each Eukaryote MAG, we employed KrakenUnique with the "nt" database from GenBank, 

enabling us to identify the species with the highest proportion of assigned k-mers. For gene prediction 

and protein annotation of the Eukaryote MAGs, we utilized the AUGUSTUS option from the BUSCO 

(Simão et al., 2015) packages. The predicted proteins were further annotated using the eggnog and 

MMseq2 databases, providing comprehensive functional insights into the selected Eukaryote MAGs. This 
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rigorous approach allowed us to gain a comprehensive understanding of the genomic and taxonomic 

characteristics of the Eukaryote MAGs in our pipeline. 

5.3.3.4 Viral MAGs 

The remaining contigs, which were not categorized as prokaryote or eukaryote MAGs, underwent further 

processing using the Phamb (Johansen et al., 2022) pipeline. This pipeline leverages DeepVirFinder (Ren 

et al., 2020) for the identification of viral contigs and VAMB (Nissen et al., 2021) for the binning of these 

viral contigs. The pipeline incorporates prodigal and a random forest model for accurate viral genome 

annotation. To ensure the quality and taxonomic classification of these viral bins, we employed CheckV 

(Nayfach, Camargo, et al., 2021) and DeepVirFinder. CheckV allowed us to evaluate the quality of the 

bins, while DeepVirFinder provided valuable insights into their viral taxonomy. By applying this approach, 

we aimed to gain a comprehensive understanding of the viral component within the metagenomic data 

and enrich our knowledge of the diverse viral communities present in the samples. 

 

 

Figure 13: A comprehensive genome-resolved metagenomic pipeline 

5.4 Metatranscriptomics 

Metagenomics serves as a genetic census, addressing fundamental questions of community composition 

and functional potential. By scrutinizing the complete genomic content of a sample, metagenomics 

answers the queries "who populates the ecosystem" and "what activities are underway." This 

comprehensive survey captures the genetic blueprints of all organisms present, revealing their potential 

capabilities and providing a panoramic view of the genetic diversity within the community. However, it's 

essential to recognize that metagenomics also encompasses dormant and inoperative DNA segments, 

which can lead to an overestimation of functional potential. 
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In contrast, metatranscriptomics takes a dynamic snapshot of microbial activity, portraying the ongoing 

symphony of functional gene expression within a community. By focusing on the transcribed RNA 

molecules, metatranscriptomics delves into the question "what are they actively doing?" This approach 

captures the moment-to-moment activities of microbial players, highlighting which genes are actively 

involved in metabolic pathways, signal transduction, and other vital functions. Metatranscriptomics 

offers insights into real-time responses to environmental cues, revealing the true functional dynamics of 

the community. 

The methodology underlying metatranscriptomics shares commonalities with metagenomics, primarily 

in the utilization of shotgun whole-genome sequencing. However, the key difference lies in the sequence 

material under investigation. In metatranscriptomics, RNA takes center stage as the starting point. The 

process involves extracting RNA, followed by the depletion of structural RNA to isolate the functional 

transcripts. These transcripts are then transformed into complementary DNA (cDNA), enabling the 

conversion of RNA-based information into a format that can be readily sequenced and analyzed. This 

process effectively captures the active genetic processes underway within the microbial community. 

Metatranscriptomics demands a more extensive sequencing effort compared to metagenomics when 

applied to the same microbial community. To put it in perspective, if the least common organism is 

around 100 times less prevalent than the most abundant one, then roughly 1% of the DNA reads 

associated with the less common organism should be substantial enough for its metagenomic detection. 

Metatranscriptomics bioinformatics typically encompass a series of essential stages, comprising: 

1. Quality control of shotgun sequencing data to eliminate or trim erroneous reads. 

2. Alignment with reference sequences or de novo assembly for characterizing transcript 

abundance. 

3. Functional and taxonomic characterization to discern active components and community 

members. 

4. Application of statistical analyses to normalize expression and discern variations between 

distinct conditions, such as identifying differential expression or co-expression dynamics. 

Earlier, we delved into steps 1-3 within the metagenomics, and it's worth noting that the same core 

methodology and concepts extend seamlessly to metatranscriptomics. There exist several refined 

workflows designed to seamlessly integrate these steps, as evidenced by prominent pipelines such as 

COMAN (Ni et al., 2016), SAMSA2 (Westreich et al., 2018), HUMAnN (Beghini et al., n.d.), and 

SqueezeMeta (Tamames & Puente-Sánchez, 2019). These workflows offer systematic and efficient 

frameworks to facilitate in-depth metatranscriptomic analyses. Remarkably, the HuMAnN workflow 

stands out as the most widely adopted pipeline for both environmental and host-associated 

metatranscriptomics studies. This pipeline's popularity underscores its effectiveness in enabling 

comprehensive insights into the intricate world of active genetic processes within microbial 

communities. 

5.4.1 Statistical considerations and normalization strategies for metatranscriptomics 

Much like single-organism RNA-seq, metatranscriptomics measurements rely on whole numbers 

representing sequencing reads. These counts are influenced by both the amount of sequencing 

performed on a sample and the length of the transcripts being studied. The counts often include 

numerous instances of zeros, which often signify instances where a transcript wasn't detected rather 
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than a complete lack of expression. Moreover, the levels of transcript abundance within a particular 

species can encompass a wide range of values, sometimes differing by several orders of magnitude. 

Similarly, a single transcript's abundance might vary substantially across different samples, leading to a 

deviation from the assumptions of normal distribution that underlie many common statistical tests. To 

tackle these challenges, various statistical techniques such as edgeR (M. D. Robinson et al., 2010), 

DESeq2 (Love et al., 2014), and NOISeq (Tarazona et al., 2015) have been developed for RNA-seq 

analysis.  

Metatranscriptomics poses distinct normalization challenges compared to single-organism RNA-seq, 

chiefly tied to transcript-gene copy relationships. Unlike the typical assumption in single-organism RNA-

seq that each cell harbors one copy of each gene, microbial communities can exhibit varying gene counts 

due to loss or duplication within strain-specific variations. This contributes to the occurrence of RNA 

zeroes, and an increase in gene copies correlates with heightened transcript abundance.  

Consequently, community-level metatranscriptomics shows a strong correlation between DNA-level and 

RNA-level abundance of functions across samples. As a result, differences in metatranscriptomics 

abundance often stem from underlying gene copy number variations (metagenomic abundance), rather 

than actual differential expression or functional activity. 

To counterbalance the pronounced influence of functional potential on community activity, a strategy is 

needed to gauge the relative expression of functions. This involves determining how much a function is 

over- or underexpressed in a metatranscriptome relative to the abundance of community genes 

encoding it. When genes can be attributed to specific species, a normalization approach involves 

adjusting transcript abundances within species. This method assumes uniform gene copy numbers 

within a species, akin to separate single-organism RNA-seq datasets. Alternatively, for communities with 

paired metatranscriptomics and metagenomics data, normalizing gene family RNA abundance by its DNA 

abundance can be applied. This approach is suitable for genes without known taxonomy and accounts 

for gene loss and duplication events (Y. Zhang et al., 2021). 

6 Future directions 

The science of environmental genomics continues to advance at a dizzying pace. Projects are producing 

ever-increasing volumes of data for a number of reasons: (1) as the scope of projects gets broader, more 

sites are sampled, more samples are collected per site, and multi-year data must be re-analyzed together 

as a whole to facilitate direct comparisons; (2) new DNA sequencing technologies means the depth of 

sequencing per sample has increased greatly, sometimes involving more than 100 million DNA sequence 

reads per sample in the case of metagenomics/metatranscriptomics data; and (3) reference databases 

are always getting bigger, increasing the time required to make taxonomic assignments. Analyzing these 

huge datasets within a reasonable timeframe will require advances both algorithmically and 

computationally. For example, NCBI Blast 2.15.0, released October 2023, included improvements that 

caused a significant speed-up in CEGA’s workflow (Camacho & Madden, 2023)—a surprising 

achievement for a 33-year-old piece of software (Altschul et al., 1990)! On the computational side, 

CPUs continue to add more cores allowing computations to run in parallel. What would have been 

considered supercomputer cluster just a few decades ago is now available on a single chip: AMD’s 

7995WX CPU has 96 cores and is able to run 192 threads simultaneously (Processor Specifications | 
AMD, n.d.). Different computing architectures like graphical processing units (GPUs) and field 



 

Page 88 of 113 

 

programmable gate arrays (FPGAs) can also allow certain mathematical operations to be performed 

much faster than normal CPUs, and can have applications within bioinformatics analyses (Nobile et al., 
2017). 

Turning raw DNA sequences into species identifications requires a robust reference database. Global 

scientific efforts are rapidly increasing the quantity and quality of reference DNA barcodes, but gaps still 

exist—particularly in areas of the world that lack the resources for advanced scientific studies, or areas 

of the world that are difficult or dangerous to study (e.g., the deepest depths of the ocean). Targeted 

efforts will likely be required to close these gaps. 

The interpretation of environmental genomics data is still in its infancy. For the most part, analysts are 

just plugging species lists into existing ecological modeling frameworks, which does not take full 

advantage of the power that environmental genomics can bring to the table. Biological indices have 

historically built from small sets of species because it was difficult to measure more than that, but 

environmental genomics opens the possibility of measuring hundreds or even thousands of species 

easily and efficiently. 

One significant drawback of eDNA data is that quantitative measurements are not yet robust, so the 

technique is limited to presence/absence measurements. However, this is an intense area of research 

and there have been some promising results suggesting that quantitative measurements may be possible 

in the near future. 

While there are no formal standards yet established for the reporting of metabarcoding data, we suggest 

the following at minimum: sequence read length, QC criteria, read count per sample before and after 

quality filtering, software packages and parameter setting used in each step of the pipeline, OTU/ASV 

assignments, minimal read thresholds, and reference libraries used. These minimum reporting 

requirements will improve confidence in eDNA results and their interpretations and enhance the 

comparability between multiple studies and between eDNA practitioners. The wider integration of 

reporting standards will support eDNA data collation, data mining, and meta-analytical approaches for 

addressing larger-scale environmental questions. 

Establishing standards for eDNA analysis and interpretation is key to facilitate its adoption by industry 

and regulatory agencies. Many of the debates about which analytical methods are “best” are largely 

academic since most of the popular choices are “good enough”—especially in light of the global 

biodiversity crisis and new regulations like the EU’s Corporate Sustainability Reporting Directive. But 

what is needed is for general agreement about which methods to use in which situations so that results 

are comparable across time and space. We hope this document serves as a step in that direction. 
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8 Appendix A: Occupancy Models 

eDNA surveys typically involve collection of multiple samples per site location (e.g., environmental 

replicates) and laboratory analysis includes subsampling of the eDNA extract from each individual 

sample (e.g., qPCR technical replicates). Therefore, eDNA surveys typically include three nested levels of 

sampling (Figure 14): 

1. Locations or sites (primary sample units) within a study area, 

2. Environmental samples (secondary sample units) collected form each location, and 

3. Subsamples (replicate observations – qPCR) taken within each environmental sample 

 

Figure 14: Diagram depicting the nested levels typically implemented in an eDNA survey.  The first level indicates sampling 
locations or sites where eDNA is collected.  The second level indicates multiple environmental replicates collected per site.  
The third level indicates multiple PCR replicates processed per environmental sample collected. 

Therefore, a multiscale occupancy model can be implemented to estimate (Figure 14): 

1. the probability of target species occurrence at the location (ψ, psi),  

2. the conditional probability of target eDNA occurrence in an environmental sample given that the 

target species is present at that location (θ, theta), and  

3. the conditional probability of positive detection in a qPCR replicate given that the target eDNA is 

present in the environmental sample (p). 

The simplest model for this multiscale occupancy (ψ(.), θ(.), p(.)) estimates the mean probability the 

species is present across any of the sampling locations (ψ), the mean probability target eDNA was 



 

   

collected in a sample if the target species was present (θ), and the mean probability eDNA was detected 

in a qPCR replicate if the target eDNA was collected (p). 

• Using the equation 1-(1-θ)n≥0.95, where θ is the probability of eDNA occurrence and n is the 

number of water samples, the number of water samples required to surpass 95% probability of 

successful eDNA collection can be calculated, 

• Using the equation 1-(1-p)n≥0.95, where p is the probability of qPCR detection and n is the 

number of qPCR replicates, the number of qPCR replicates required to surpass 95% probability 

of detection within a water sample can be calculated. 

Both the probability of eDNA collection (θ) and the probability of qPCR detection (p) will influence the 

cumulative probability of eDNA detection (Figure 15).  For example, a qPCR cannot detect an eDNA 

molecule that was never successfully collected, no matter how many qPCR replicates are performed. 

Collecting more eDNA samples can improve the probability of eDNA collection and performing more 

qPCR analysis can increase the probability of eDNA detection within a qPCR.  A pilot study performed at 

sites of known species occurrence can help to evaluate what level of effort (both environmental and 

qPCR replicates) is required to confidently conclude presence or probable absence from an eDNA survey. 

A species may have a low probability of eDNA occurrence in a water sample (θ) if it is rare, displays a low 

eDNA shed rate, occurs in a habitat with large water volume (causing eDNA dilution effects), or if 

samples aren’t collected in close proximity to individuals (e.g., surface water samples collected targeting 

a benthic organism). Furthermore, differences in environmental covariates across sampling sites are 

likely to influence the probability of eDNA occurrence in a water sample (θ), for example turbidity 

(reducing the amount volume filtered), water discharge/flow, river width or depth, and many more.  

 

 



 

   

 

Figure 15: Changes to the cumulative probability of eDNA detection based on the number of environmental samples collected.  Each plot displays differences across 
an increasing number of PCR replicates (1, 3, or 6).  The top three plots display probabilities based on a PCR detection of p = 0.50 and the bottom three display 
probabilities based on PCR detection of p = 0.75.  Plots from left to right indicate cumulative probabilities based on increasing probability of eDNA collection (θ = 
0.25, 0.50, or 0.75).  Dashed line indicates a 95% probability of eDNA detection. 

 



 

   

Through occupancy models, the θ and p probabilities can be estimated and the sampling design can be 

evaluated to ensure sufficient sampling to reach a target probability of species detection.  This can 

provide confidence to an eDNA study program.  Let’s take an example where the probability of eDNA 

collection within a sample (θ) is 0.50 and the probability of eDNA detection with a PCR replicate (p) is 

0.75 (Figure C.2). With these parameters, we can see how changing the number of samples collected 

(the x-axis of Figure C.2) or changing the number of PCR replicates (the three curves in Figure C.2) impact 

the cumulative probability of detection.  In this scenario, it is required to collect five eDNA samples and 

analyze at least three PCR replicates to achieve a >95% probability of detection (dashed line in Figure 

15).  

Several software packages have been developed for occupancy modeling analysis of eDNA data: 

• eDNAoccupancy R package (Dorazio & Erickson 2017) – most commonly used, 

• msocc R package (Stratton et al. 2020), 

• https://seak.shinyapps.io/eDNA/ (Griffin et al. 2020) – recently developed to incorporate 

probability of false positives. 

These programs typically perform a Bayesian multiscale occupancy model to estimate posterior 

summaries of occurrence and detection probabilities. Furthermore, a user can evaluate how occurrence 

and detection probabilities are impacted from environmental and sampling covariates. This allows users 

to evaluate if certain environmental or sampling covariates are impacting the probability of species 

presence (ψ) and/or the probability of successful detection (θ and p). This information can help to both 

understand what factors impact the distribution of a species across sites/locations, and what factors 

impact the successful collection and detection of eDNA for the target species. Furthermore, analysis of 

occupancy models can provide estimates of probability of collection within a water sample (θ) and 

probability of detection within a qPCR replicate (p), to inform if appropriate sampling effort was 

undertaken.  It is important to collect the necessary environmental metadata during sampling that an 

end user wants to evaluate in an occupancy model. 
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